Publications by authors named "Patrick B Konietzny"

Lectin-glycan interactions are at the heart of a multitude of biological events. Glycans are usually presented in a multivalent manner on the cell surface as part of the so-called glycocalyx, where they interact with other entities. This multivalent presentation allows us to overcome the typical low affinities found for individual glycan-lectin interactions.

View Article and Find Full Text PDF

Glycoconjugates are a versatile class of bioactive molecules that have found application as vaccines and antivirals and in cancer therapy. Their synthesis typically involves elaborate functionalization and use of protecting groups on the carbohydrate component in order to ensure efficient and selective conjugation. Alternatively, non-functionalized, non-protected carbohydrates isolated from biological sources or derived through biotechnological methods can be directly conjugated -methyloxyamine groups.

View Article and Find Full Text PDF

Sialoglycans play a key role in many biological recognition processes and sialylated conjugates of various types have successfully been applied, e.g., as antivirals or in antitumor therapy.

View Article and Find Full Text PDF

In this work, we present a bottom-up approach for the synthesis of lactose-functionalized glycomacromolecules and glycofunctionalized liposomes and apply these compounds to investigate their effects of multivalent presentation on binding to galectin-3. Step-wise assembly of tailor-made building blocks on solid supports was used to synthesize a series of oligo(amidoamine) scaffolds that were further conjugated to lactose copper catalyzed 1,3-dipolar cycloaddition. Binding studies with galectin-3 revealed affinities in the micromolar range that increased with increasing carbohydrate valency, and decreased with increasing size and linker flexibility.

View Article and Find Full Text PDF

Precision glycomacromolecules have proven to be important tools for the investigation of multivalent carbohydrate-lectin interactions by presenting multiple glycan epitopes on a highly-defined synthetic scaffold. Herein, we present a new strategy for the versatile assembly of heteromultivalent glycomacromolecules that contain different carbohydrate motifs in proximity within the side chains. A new building block suitable for the solid-phase polymer synthesis of precision glycomacromolecules was developed with a branching point in the side chain that bears a free alkyne and a TIPS-protected alkyne moiety, which enables the subsequent attachment of different carbohydrate motifs by on-resin copper-mediated azide-alkyne cycloaddition reactions.

View Article and Find Full Text PDF