The covalent attachment of a bacterial-derived capsular polysaccharide to protein is of critical importance in transforming the polysaccharide from an antigen with limited immunogenicity in infants and older adults to an antigen that can prevent potentially fatal disease. For a polysaccharide-protein conjugate vaccine (PCV) candidate to be successful, it must be sufficiently stable. Chemical breakage of carbohydrate bonds in the polysaccharide may result in the reduction of "conjugate dose" and could negatively impact immunogenicity and the ability of the vaccine to prime for memory responses.
View Article and Find Full Text PDFShingles is a painful, blistering rash caused by reactivation of latent varicella-zoster virus (VZV) and most frequently occurs in elderly and immunocompromised individuals. Currently, two approved vaccines for the prevention of shingles are on the market, a live attenuated virus vaccine ZOSTAVAX® (Merck & Co., Inc.
View Article and Find Full Text PDFThe temperature-dependent secondary structure of two monoclonal IgG antibodies, anti-IGF1R and anti-TSLP, were examined by transmission mode Fourier Transform Infrared (FTIR) spectroscopy. Anti-IGF1R and anti-TSLP are IgG monoclonal antibodies (mAbs) directed against human Insulin-like Growth Factor 1 Receptor for anti-tumor activity and Thymic Stromal Lymphopoietin cytokine for anti-asthma activity, respectively. Differential scanning calorimetry (DSC) clearly indicates both antibodies in their base formulations have a lower temperature protein conformational change near 70 °C (T) and a higher temperature protein conformational change near 85 °C (T).
View Article and Find Full Text PDFPurpose: The purpose was to evaluate DSF for high throughput screening of protein thermal stability (unfolding/ aggregation) across a wide range of formulations. Particular focus was exploring PROTEOSTAT® - a commercially available fluorescent rotor dye - for detection of aggregation in surfactant containing formulations. Commonly used hydrophobic dyes (e.
View Article and Find Full Text PDFAluminum-containing adjuvants have been widely used in vaccine formulations to safely and effectively potentiate the immune response. The examination of the extent of antigen adsorption to aluminum adjuvant is always evaluated during the development of aluminum adjuvant containing vaccines. A rapid, automated, high-throughput assay was developed to measure antigen adsorption in a 96-well plate format using a TECAN Freedom EVO (TECAN).
View Article and Find Full Text PDFTrivalent native outer membrane vesicles (nOMVs) derived from three genetically modified Neisseria meningitidis serogroup B strains have been previously evaluated immunologically in mice and rabbits. This nOMV vaccine elicited serum bactericidal activity (SBA) against multiple N. meningitidis serogroup B strains as well as strains from serogroups C, Y, W, and X.
View Article and Find Full Text PDFWe have previously demonstrated that the compound 3-(2-ethylphenyl)-5-(3-methoxyphenyl)-1H-1,2,4-triazole exerts immunosuppressive effects in several experimental models of autoimmunity. These results were achieved by subcutaneously administering ST1959 after dissolution in an oily vehicle, because of its poor water solubility. To circumvent this problem, we sought to determine whether nanocochleate technology could be successfully exploited to deliver ST1959 and protect mice undergoing lethal acute graft-versus-host disease (GVHD).
View Article and Find Full Text PDFAluminum adjuvants are commonly used in prophylactic vaccines to enhance antigen immunogenicity through induction of high-titer antibody responses. Three major forms of aluminum adjuvants with substantially different physical and chemical properties have been described: aluminum phosphate (AlPO(4)), aluminum hydroxide (AlOH) and amorphous aluminum hydroxyphosphate sulfate (AAHS). Here we describe the effect of these different aluminum adjuvants on the formulation and subsequent immunogenicity in mice of virus-like particles (VLPs) consisting of the L1 protein of Human Papillomavirus (HPV) Type 16.
View Article and Find Full Text PDFIF-liposomes are formed by a unique process that involves fusing small liposomes into interdigitated lipid sheets, using either ethanol or hydrostatic pressure. The interdigitation-fusion method requires liposome formulations with lipids that form the L beta I phase. Preparing ethanol-induced IF-liposomes is simple and quick.
View Article and Find Full Text PDFWe present results on using cooperative interactions to shield liposomes by incorporating multiple hydrophobic anchoring sites on polyethylene glycol (PEG) polymers. The hydrophobically-modified PEGs (HMPEGs) are comb-graft polymers with strictly alternating monodisperse PEG blocks (M(w)=6, 12, or 35 kDa) bonded to C18 stearylamide hydrophobes. Cooperativity is varied by changing the degree of oligomerization at a constant ratio of PEG to stearylamide.
View Article and Find Full Text PDF