Targeting mitophagy to activate the recycling of faulty mitochondria during aging is a strategy to mitigate muscle decline. We present results from a randomized, placebo-controlled trial in middle-aged adults where we administer a postbiotic compound Urolithin A (Mitopure), a known mitophagy activator, at two doses for 4 months (NCT03464500). The data show significant improvements in muscle strength (∼12%) with intake of Urolithin A.
View Article and Find Full Text PDFImportance: Aging is associated with a decline in mitochondrial function and reduced exercise capacity. Urolithin A is a natural gut microbiome-derived food metabolite that has been shown to stimulate mitophagy and improve muscle function in older animals and to induce mitochondrial gene expression in older humans.
Objective: To investigate whether oral administration of urolithin A improved the 6-minute walk distance, muscle endurance in hand and leg muscles, and biomarkers associated with mitochondrial and cellular health.
Glia
May 2022
In amyotrophic lateral sclerosis (ALS) caused by SOD1 gene mutations, both cell-autonomous and noncell-autonomous mechanisms lead to the selective degeneration of motoneurons (MN). Here, we evaluate the therapeutic potential of gene therapy targeting mutated SOD1 in mature astrocytes using mice expressing the mutated SOD1 protein. An AAV-gfaABC D vector encoding an artificial microRNA is used to deliver RNA interference against mutated SOD1 selectively in astrocytes.
View Article and Find Full Text PDFBackground: Urolithin A (UA) is produced by gut microflora from foods rich in ellagitannins. UA has been shown to improve mitochondrial health preclinically and in humans. Not everyone has a microbiome capable of producing UA, making supplementation with UA an appealing strategy.
View Article and Find Full Text PDFUrolithin A (UA) is a natural dietary, microflora-derived metabolite shown to stimulate mitophagy and improve muscle health in old animals and in preclinical models of aging. Here, we report the results of a first-in-human clinical trial in which we administered UA, either as a single dose or as multiple doses over a 4-week period, to healthy, sedentary elderly individuals. We show that UA has a favourable safety profile (primary outcome).
View Article and Find Full Text PDFIn vivo H magnetic resonance spectroscopy (H-MRS) investigations of amyotrophic lateral sclerosis (ALS) mouse brain may provide neurochemical profiles and alterations in association with ALS disease progression. We aimed to longitudinally follow neurochemical evolutions of striatum, brainstem and motor cortex of mice transgenic for G93A mutant human superoxide dismutase type-1 (G93A-SOD1), an ALS model. Region-specific neurochemical alterations were detected in asymptomatic G93A-SOD1 mice, particularly in lactate (-19%) and glutamate (+8%) of brainstem, along with γ-amino-butyric acid (-30%), N-acetyl-aspartate (-5%) and ascorbate (+51%) of motor cortex.
View Article and Find Full Text PDFBackground: Metabolic perturbations and slower renewal of cellular components associated with aging increase the risk of Parkinson's disease (PD). Declining activity of AMPK, a critical cellular energy sensor, may therefore contribute to neurodegeneration.
Methods: Here, we overexpress various genetic variants of the catalytic AMPKα subunit to determine how AMPK activity affects the survival and function of neurons overexpressing human α-synuclein in vivo.
To understand the cause of Parkinson's disease (PD), it is important to determine the functional interactions between factors linked to the disease. Parkin is associated with autosomal recessive early-onset PD, and controls the transcription of PGC-1α, a master regulator of mitochondrial biogenesis. These two factors functionally interact to regulate the turnover and quality of mitochondria, by increasing both mitophagic activity and mitochondria biogenesis.
View Article and Find Full Text PDFThe regenerative ability of CNS axons decreases with age, however, this ability remains largely intact in PNS axons throughout adulthood. These differences are likely to correspond with age-related silencing of proteins necessary for axon growth and elongation. In previous studies, it has been shown that reintroduction of the α9 integrin subunit (tenascin-C receptor, α9) that is downregulated in adult CNS can improve neurite outgrowth and sensory axon regeneration after a dorsal rhizotomy or a dorsal column crush spinal cord lesion.
View Article and Find Full Text PDFThe biological effects of urolithins remain poorly characterized, despite wide-spread human exposure via the dietary consumption of their metabolic precursors, the ellagitannins, which are found in the pomegranate fruit, as well as in nuts and berries. We identified urolithin A (UA) as a first-in-class natural compound that induces mitophagy both in vitro and in vivo following oral consumption. In C.
View Article and Find Full Text PDFPassive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-β peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention.
View Article and Find Full Text PDFNeuromodulation by spinal cord stimulation has been proposed as a symptomatic treatment for Parkinson's disease. We tested the chronic effects of spinal cord stimulation in a progressive model of Parkinson's based on overexpression of alpha-synuclein in the substantia nigra. Adult Sprague Dawley rats received unilateral injections of adeno-associated virus serotype 6 (AAV6) in the substantia nigra to express alpha-synuclein.
View Article and Find Full Text PDFInvestigating lactate dynamics in brain tissue is challenging, partly because in vivo data at cellular resolution are not available. We monitored lactate in cortical astrocytes and neurons of mice using the genetically encoded FRET sensor Laconic in combination with two-photon microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across tissue.
View Article and Find Full Text PDFAccumulation and misfolding of the alpha-synuclein protein are core mechanisms in the pathogenesis of Parkinson's disease. While the normal function of alpha-synuclein is mainly related to the control of vesicular neurotransmission, its pathogenic effects are linked to various cellular functions, which include mitochondrial activity, as well as proteasome and autophagic degradation of proteins. Remarkably, these functions are also affected when the renewal of macromolecules and organelles becomes impaired during the normal aging process.
View Article and Find Full Text PDFGenetic hearing loss accounts for up to 50% of prelingual deafness worldwide, yet there are no biologic treatments currently available. To investigate gene therapy as a potential biologic strategy for restoration of auditory function in patients with genetic hearing loss, we tested a gene augmentation approach in mouse models of genetic deafness. We focused on DFNB7/11 and DFNA36, which are autosomal recessive and dominant deafnesses, respectively, caused by mutations in transmembrane channel-like 1 (TMC1).
View Article and Find Full Text PDFExcitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate.
View Article and Find Full Text PDFObjective: Amyotrophic lateral sclerosis is an incurable disorder mainly characterized by motoneuron degeneration. Mutations in the superoxide dismutase 1 (SOD1) gene account for 20% of familial forms of the disease. Mutant SOD1 exerts multiple pathogenic effects through the gain of toxic properties in both neurons and glial cells.
View Article and Find Full Text PDFAlzheimer's disease is the most prevalent tauopathy and cause of dementia. We investigate the hypothesis that reactivation of plasticity can restore function in the presence of neuronal damage resulting from tauopathy. We investigated two models with tau hyperphosphorylation, aggregation and neurodegeneration: a transgenic mouse model in which the mutant P301S tau is expressed in neurons (Tg P301S), and a model in which an adeno-associated virus expressing P301S tau (AAV-P301S) was injected in the perirhinal cortex, a region critical for object recognition (OR) memory.
View Article and Find Full Text PDFMutations in LRRK2 are one of the primary genetic causes of Parkinson's disease (PD). LRRK2 contains a kinase and a GTPase domain, and familial PD mutations affect both enzymatic activities. However, the signaling mechanisms regulating LRRK2 and the pathogenic effects of familial mutations remain unknown.
View Article and Find Full Text PDFSelective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons.
View Article and Find Full Text PDFThe controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains.
View Article and Find Full Text PDFIn the context of motoneuron diseases, gene delivery as an experimental or therapeutic approach is hindered by the challenge to specifically target cell populations that are widely distributed along the spinal cord. Further complicating the task, transgenes often need to be delivered to motoneurons and/or glial cells to address the non-cell-autonomous mechanisms involved in disease pathogenesis. Intracerebroventricular (ICV) injection of recombinant adeno-associated viruses (AAVs) in newborn mice allows distributing viral vectors throughout the central nervous system while limiting undesired transduction of peripheral organs.
View Article and Find Full Text PDFThe rapid increase in the number of approved therapeutic proteins, including recombinant antibodies, for diseases necessitating chronic treatments raises the question of the overall costs imposed on healthcare systems. It is therefore important to investigate alternative methods for recombinant protein administration. The implantation of genetically engineered cells is an attractive strategy for the chronic long-term delivery of recombinant proteins.
View Article and Find Full Text PDFAn increase in α-synuclein levels due to gene duplications/triplications or impaired degradation is sufficient to trigger its aggregation and cause familial Parkinson disease (PD). Therefore, lowering α-synuclein levels represents a viable therapeutic strategy for the treatment of PD and related synucleinopathies. Here, we report that Polo-like kinase 2 (PLK2), an enzyme up-regulated in synucleinopathy-diseased brains, interacts with, phosphorylates and enhances α-synuclein autophagic degradation in a kinase activity-dependent manner.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. We have recently shown that human mesenchymal stem cells (hMSCs) modified to release glial cell line-derived neurotrophic factor (GDNF) decrease disease progression in a rat model of ALS when delivered to skeletal muscle. In the current study, we determined whether or not this effect could be enhanced by delivering GDNF in concert with other trophic factors.
View Article and Find Full Text PDF