Transient oscillatory events in the sleep electroencephalogram represent short-term coordinated network activity. Of particular importance, sleep spindles are transient oscillatory events associated with memory consolidation, which are altered in aging and in several psychiatric and neurodegenerative disorders. Spindle identification, however, currently contains implicit assumptions derived from what waveforms were historically easiest to discern by eye, and has recently been shown to select only a high-amplitude subset of transient events.
View Article and Find Full Text PDFDetection of spectral peaks and estimation of their properties, including frequency and amplitude, are fundamental to many applications of signal processing. Electroencephalography (EEG) of sleep, in particular, displays characteristic oscillations that change continuously throughout the night. Capturing these dynamics is essential to understanding the sleep process and characterizing the heterogeneity observed across individuals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2018
Proc Natl Acad Sci U S A
August 2017
Granger causality methods were developed to analyze the flow of information between time series. These methods have become more widely applied in neuroscience. Frequency-domain causality measures, such as those of Geweke, as well as multivariate methods, have particular appeal in neuroscience due to the prevalence of oscillatory phenomena and highly multivariate experimental recordings.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Electrodermal activity (EDA) is a measure of physical arousal, which is frequently measured during psychophysical tasks relevant for anxiety disorders. Recently, specific protocols and procedures have been devised in order to examine the neural mechanisms of fear conditioning and extinction. EDA reflects important responses associated with stimuli specifically administrated during these procedures.
View Article and Find Full Text PDF