The somatostatin (SST) receptor family controls pituitary hormone secretion, but the distribution and specific roles of these receptors on the excitability and voltage-gated calcium signaling of hormone producing pituitary cells have not been fully characterized. Here we show that the rat pituitary gland expressed Sstr1, Sstr2, Sstr3, and Sstr5 receptor genes in a cell type-specific manner: Sstr1 and Sstr2 in thyrotrophs, Sstr3 in gonadotrophs and lactotrophs, Sstr2, Sstr3, and Sstr5 in somatotrophs, and none in corticotrophs and melanotrophs. Most gonadotrophs and thyrotrophs spontaneously fired high-amplitude single action potentials, which were silenced by SST without affecting intracellular calcium concentrations.
View Article and Find Full Text PDFPancreatic beta cells secrete insulin in response to plasma glucose. The ATP-sensitive potassium channel (K ) links glucose metabolism to islet electrical activity in these cells by responding to increased cytosolic [ATP]/[ADP]. It was recently proposed that pyruvate kinase (PK) in close proximity to beta cell K locally produces the ATP that inhibits K activity.
View Article and Find Full Text PDFElectrical bursting oscillations in the β-cells of pancreatic islets have been a focus of investigation for more than fifty years. This has been aided by mathematical models, which are descendants of the pioneering Chay-Keizer model. This article describes the key biophysical and mathematical elements of this model, and then describes the path forward from there to the Integrated Oscillator Model (IOM).
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
June 2023
The standard model for Ca oscillations in insulin-secreting pancreatic β cells centers on Ca entry through voltage-activated Ca channels. These work in combination with ATP-dependent K channels, which are the bridge between the metabolic state of the cells and plasma membrane potential. This partnership underlies the ability of the β cells to secrete insulin appropriately on a minute-to-minute time scale to control whole body plasma glucose.
View Article and Find Full Text PDFCurr Opin Endocr Metab Res
August 2022
Recent single-cell RNA sequencing has offered an unprecedented view of pituitary cell transcriptomic profiles. In this review, these new data are briefly discussed and compared with the classical literature, focusing on pituitary corticotrophs. These cells are introduced by discussing their marker genes, followed by a review of G protein-coupled receptor gene expression, heterotrimeric G protein genes, and genes encoding signaling pathways downstream of G proteins: adenylate cyclases, phosphodiesterases, phospholipases, and protein kinases.
View Article and Find Full Text PDFThe mammalian pituitary gland is a complex organ consisting of hormone-producing cells, anterior lobe folliculostellate cells (FSCs), posterior lobe pituicytes, vascular pericytes and endothelial cells, and Sox2-expressing stem cells. We present single-cell RNA sequencing and immunohistofluorescence analyses of pituitary cells of adult female rats with a focus on the transcriptomic profiles of nonhormonal cell types. Samples obtained from whole pituitaries and separated anterior and posterior lobe cells contained all expected pituitary resident cell types and lobe-specific vascular cell subpopulations.
View Article and Find Full Text PDFSporadic pituitary adenomas occur in over 10% of the population. Hormone-secreting adenomas, including those causing Cushing's disease (CD), cause severe morbidity and early mortality. Mechanistic studies of CD are hindered by a lack of in vitro models and control normal human pituitary glands.
View Article and Find Full Text PDFATP-sensitive K (K(ATP)) channels were first reported in the β-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet β-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation.
View Article and Find Full Text PDFThe role of calcium, but not of other intracellular signaling molecules, in the release of pituitary hormones by exocytosis is well established. Here, we analyzed the contribution of phosphatidylinositol kinases (PIKs) to calcium-driven prolactin (PRL) release in pituitary lactotrophs: PI4Ks - which control PI4P production, PIP5Ks - which synthesize PI(4, 5)P2 by phosphorylating the D-5 position of the inositol ring of PI4P, and PI3KCs - which phosphorylate PI(4, 5)P to generate PI(3, 4, 5)P. We used common and PIK-specific inhibitors to evaluate the strength of calcium-secretion coupling in rat lactotrophs.
View Article and Find Full Text PDFInsulin is secreted in a pulsatile pattern, with important physiological ramifications. In pancreatic β-cells, which are the cells that synthesize insulin, insulin exocytosis is elicited by pulses of elevated intracellular Ca initiated by bursts of electrical activity. In parallel with these electrical and Ca oscillations are oscillations in metabolism, and the periods of all of these oscillatory processes are similar.
View Article and Find Full Text PDFIn mammalian cells, extracellular protons act as orthosteric and allosteric ligands for multiple receptors and channels. The aim of this study is to identify proton sensors in the rat pituitary gland. qRT-PCR analysis indicated the expression of G-protein-coupled receptor 68 gene (Gpr68) and acid-sensing ion channel (ASIC) genes Asic1, Asic2, and Asic4 in anterior pituitary cells and Asic1 and Asic2 in immortalized GH3 pituitary cells.
View Article and Find Full Text PDFContinuous, as opposed to pulsatile, delivery of hypothalamic gonadotropin-releasing hormone (GnRH) leads to a marked decrease in secretion of pituitary gonadotropins LH and FSH and impairment of reproductive function. Here we studied the expression profile of gonadotropin subunit and GnRH receptor genes in rat pituitary in vitro and in vivo to clarify their expression profiles in the absence and continuous presence of GnRH. Culturing of pituitary cells in GnRH-free conditions downregulated Fshb, Cga, and Gnrhr expression, whereas continuous treatment with GnRH agonists upregulated Cga expression progressively and Gnrhr and Fshb expression transiently, accompanied by a prolonged blockade of Fshb but not Gnrhr expression.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2019
Understanding the physiology and pathology of an organ composed of a variety of cell populations depends critically on genome-wide information on each cell type. Here, we report single-cell transcriptome profiling of over 6,800 freshly dispersed anterior pituitary cells from postpubertal male and female rats. Six pituitary-specific cell types were identified based on known marker genes and characterized: folliculostellate cells and hormone-producing corticotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs.
View Article and Find Full Text PDFThe pituitary gland contains six types of endocrine cells defined by hormones they secrete: corticotrophs, melanotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs. All these cell types are electrically excitable, and voltage-gated calcium influx is the major trigger for their hormone secretion. Along with hormone intracellular content, G-protein-coupled receptor and ion channel expression can also be considered as defining cell type identity.
View Article and Find Full Text PDFPituitary corticotrophs fire action potentials spontaneously and in response to stimulation with corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP), and such electrical activity is critical for calcium signaling and calcium-dependent adrenocorticotropic hormone secretion. These cells typically fire tall, sharp action potentials when spontaneously active, but a variety of other spontaneous patterns have also been reported, including various modes of bursting. There is variability in reports of the fraction of corticotrophs that are electrically active, as well as their patterns of activity, and the sources of this variation are not well understood.
View Article and Find Full Text PDFThe peptide oxytocin (OT) is secreted by hypothalamic neurons and exerts numerous actions related to reproduction. OT stimulation of prolactin secretion in female rats is important during the estrous cycle, pregnancy, and lactation. Here we report that OT also stimulates transients of intracellular Ca(2+) concentration in somatotrophs and gonadotrophs as well as the release of GH and LH in a dose-dependent manner with EC50 values that closely correspond to the ligand affinity of the OT receptor (OTR).
View Article and Find Full Text PDFMany hormones are released in pulsatile patterns. This pattern can be modified, for instance by changing pulse frequency, to encode relevant physiological information. Often other properties of the pulse pattern will also change with frequency.
View Article and Find Full Text PDFThe plasma membrane electrical activities of neurons that secrete gonadotropin-releasing hormone (GnRH) have been studied extensively. A couple of mathematical models have been developed previously to explain different aspects of these activities. The goal of this article is to develop a single model that accounts for the previously modeled experimental results and some more recent results that have not been accounted for.
View Article and Find Full Text PDFOlfactory bulb-derived (central) ensheathing cell (OB OEC) transplants have shown significant promise in rat models of spinal cord injury, prompting the use of lamina propria-derived (peripheral) olfactory ensheathing cells (LP OECs) in both experimental and clinical trials. Although derived from a common embryonic precursor, both sources of OECs reside in different nervous system compartments postnatally, and their ability to promote regeneration and efficacy after transplantation may differ depending on both their source and mode of transplantation. Here, we have purified green fluorescent protein-expressing LP and OB OECs, assayed their biological differences in vitro, and transplanted them acutely either directly into or rostral and caudal to a dorsolateral funiculus crush.
View Article and Find Full Text PDF