Publications by authors named "Patricio Sanchez"

Persister cells and biofilms are associated with chronic urinary infections which are more critical when generated by multi-drug resistant bacteria. In this context, joint administration of phages and antibiotics has been proposed as an alternative approach, since it may decrease the probability to generate resistant mutants to both agents. In this work, we exposed cultures of uropathogenic Escherichia coli conjunctly to antibiotics and phages.

View Article and Find Full Text PDF

Quinones are attractive pharmacological scaffolds for developing new agents for the treatment of different transmissible and non-transmissible human diseases due to their capacity to alter the cell redox homeostasis. The bioactivity and potential mode of action of 19 p-quinone derivatives fused to different aromatic rings (carbo or heterocycles) and harboring distinct substituents were investigated in infective Trypanosoma brucei brucei. All the compounds, except for a furanequinone (EC38 μM), proved to be similarly or even more potent (EC = 0.

View Article and Find Full Text PDF

Piscirickettsia salmonis is the etiological agent of Piscirickettsiosis, a severe disease that affects Atlantic salmon (Salmo salar) farmed in Chile and many other areas (Norway, Scotland, Ireland, Canada and the USA). This study investigated the effects of low-dose P. salmonis infection (1 × 10  CFU/ml) on Atlantic salmon.

View Article and Find Full Text PDF

The successful application of fragment-based drug discovery strategy for the efficient synthesis of phenoxy- or phenylamino-2-phenyl-benzofuran, -benzoxazole and -benzothiazole quinones is described. Interestingly, in the final step of the synthesis of the target compounds, unusual results were observed on the regiochemistry of the reaction of bromoquinones with phenol and aniline. A theoretical study was carried out for better understanding the factors that control the regiochemistry of these reactions.

View Article and Find Full Text PDF

Urinary tract infections (UTIs) are the second most frequent bacterial infections worldwide, with Escherichia coli being the main causative agent. The increase of antibiotic-resistance determinants among isolates from clinical samples, including UTIs, makes the development of novel therapeutic strategies a necessity. In this context, the use of bacteriophages as a therapeutic alternative has been proposed, due to their ability to efficiently kill bacteria.

View Article and Find Full Text PDF

The nucleotide binding oligomerization domain like receptors, or NOD like receptors (NLRs), are intracellular receptors responsible for recognizing pathogens in vertebrates. Several NLR mammalian models have been characterized and analyzed but few studies have been performed with teleost species. In this study, we analyzed the nucleotide sequence of six mRNA variants of NLRC3 in Atlantic salmon (SsNLRC3), and we deduced the amino acid sequence coding for two different isoforms with a total length of 1135 amino acids and 1093 amino acids.

View Article and Find Full Text PDF

is the causative bacterial agent of piscirickettsiosis, a systemic fish disease that significantly impacts the Chilean salmon industry. This bacterium possesses a type IV secretion system (T4SS), several proteins of the type III secretion system (T3SS), and a single heat shock protein 60 (Hsp60/GroEL). It has been suggested that due to its high antigenicity, the Hsp60 could be surface-exposed, translocated across the membrane, and (or) secreted into the extracellular matrix.

View Article and Find Full Text PDF

Piscirickettsia salmonis is an intracellular γ-proteobacteria and the etiological agent of piscirickettsiosis, which causes massive economic losses in the Chilean salmon industry. The type IV pili (T4P) play an important role in adherence to host cell surfaces and bacterial pathogenicity. T4P contains a variable number of components, as predicted in P.

View Article and Find Full Text PDF

is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize , functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an pan-genome analysis of 19 strains from distinct geographic locations and genogroups.

View Article and Find Full Text PDF

is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs) released by deliver several virulence factors to host cells.

View Article and Find Full Text PDF

Piscirickettsia salmonis is an intracellular bacterium and the causative agent of Piscirickettsiosis, a disease responsible for considerable mortalities in the Chilean salmon farming industry. Currently, P. salmonis protein translocation across the membrane and the mechanisms by which virulence factors are delivered to host cells are poorly understood.

View Article and Find Full Text PDF

Piscirickettsia salmonis is the etiological agent of piscirickettsiosis, which, as the main systemic disease in the Chilean salmon industry, causes significant economic losses. This bacterium can produce biofilm as a persistence and survival strategy in adverse conditions. In other bacteria, cheA is a key gene for modulating the onset of bacterial chemotaxis, as well as having a secondary role in biofilm production.

View Article and Find Full Text PDF

Introduction: The determination of the morphological characteristics of the most popular sports has allowed the evaluation and comparison between athletes, which has helped to improve their performance. The Street Workout is an emerging sport based on calisthenics, which recently has become popular. Despite its popularization, neither the morphologic profile nor the morphologic characteristics of Street Workout athletes has been determined.

View Article and Find Full Text PDF

The NOD-like receptors (NLRs) were recently identified as an intracellular pathogen recognition receptor family in vertebrates. While the immune system participation of NLRs has been characterized and analyzed in various mammalian models, few studies have considered NLRs in teleost species. Therefore, this study analyzed the Atlantic salmon (Salmo salar) NLRC5.

View Article and Find Full Text PDF

Piscirickettsia salmonis is a fastidious intracellular pathogen responsible for high mortality rates in farmed salmonids, with serious economic consequences for the Chilean aquaculture industry. Oxytetracycline and florfenicol are the most frequently used antibiotics against P. salmonis, but routine use could contribute to drug resistance.

View Article and Find Full Text PDF

Introduction: the proportionality model application, based on ideal proportions, would have a great impact on high performance sports, due to best athletes to resemble anthropometrically.

Objective: the objective of this study was to compare the following anthropometric methods of proportionality: Phantom, Combined and Scalable, in male champion university Chilean soccer players in 2012 and 2013, using South American professional soccer players as criterion, in order to find the most appropriate proportionality method to sports populations.

Method: the measerement of 22 kinanthropometric variables was performed, according to the ISAK protocol, to a sample constituted of 13 members of the men's soccer team of the Pontificia Universidad Católica de Valparaíso.

View Article and Find Full Text PDF

We report here the draft genome sequence of a lethal pathogen of farmed salmonids, Piscirickettsia salmonis strain AUSTRAL-005. This virulent strain was isolated in 2008 from Oncorhynchus mykiss farms, and multiple genes involved in pathogenicity, environmental adaptation, and metabolic pathways were identified.

View Article and Find Full Text PDF

Background: Despite recent advances in diagnosis, antimicrobial therapy, and intensive care support, operative treatment remains the foundation of the management of patients with severe secondary peritonitis (SSP). This management is based on three fundamental principles: (1) Elimination of the source of infection; (2) reduction of bacterial contamination of the peritoneal cavity; and (3) prevention of persistent or recurrent intra-abdominal infection. Although recent studies have emphasized the role of open management of the abdomen and planned re-laparotomies to fulfill these principles, controversy surrounds the optimal approach because no randomized studies exist.

View Article and Find Full Text PDF