Two new cobalt corrinoid intermediates, cobalt-precorrin 5A and cobalt-precorrin 5B, have been synthesized with the aid of overexpressed enzymes of the vitamin B(12) pathway of Salmonella entericaserovar typhimurium. These compounds were made in several regioselectively (13)C-labeled forms, and their structures have been established by multidimensional NMR spectroscopy. The addition of CbiF to the enzymes known to synthesize cobalt-precorrin 4 resulted in the formation of cobalt-precorrin 5A, and the inclusion of CbiG with CbiF produced cobalt-precorrin 5B, which has allowed us to define the role of these enzymes in the anaerobic biosynthetic pathway.
View Article and Find Full Text PDFThe specificity toward substrate analogs of the first two methyltransferases in the vitamin B(12) biosynthetic pathway was probed with 15 synthetic porphyrinogens. Several novel methylated chlorins and isobacteriochlorins were isolated and characterized, suggesting the same methylation sequence C-2>C-7>C-20 as for the natural substrate, uro'gen III. The results allow us to narrow down possible structural requirements concerning substrate recognition by the methyltransferase enzymes.
View Article and Find Full Text PDFInvestigation on the use of the oxidized form (factor 3 (3a)) of the trimethylated intermediate (precorrin 3 (2)) as a substrate for the enzymes of the anaerobic pathway to vitamin B12 led to the synthesis of three pairs of novel cobalt corrinoids. The products were made with the aid of the Salmonella typhimurium enzymes CbiH, CbiF, CbiG, and CbiT, were synthesized in several 13C labeled versions, and were isolated as methylesters after esterification. Structures were determined by detailed NMR and MS analyses.
View Article and Find Full Text PDFIn Bacillus megaterium, the hemAXBCDL genes were isolated and were found to be highly similar to the genes from Bacillus subtilis that are required for the conversion of glutamyl-tRNA into uroporphyrinogen III. Overproduction and purification of HemC (porphobilinogen deaminase) and -D (uroporphyrinogen III synthase) allowed these enzymes to be used for the in vitro synthesis of uroporphyrinogen III from porphobilinogen. A second smaller cluster of three genes (termed sirABC) was also isolated and found to encode the enzymes that catalyse the transformation of uroporphyrinogen III into sirohaem on the basis of their ability to complement a defined Escherichia coli (cysG) mutant.
View Article and Find Full Text PDF