Publications by authors named "Patricio J Barra"

Article Synopsis
  • Phosphorus is an essential nutrient for plants, but its availability in soil is often limited due to being locked in insoluble forms.
  • Phosphate solubilizing bacteria (phosphobacteria) like Serratia sp. RJAL6, Klebsiella sp. RCJ4, and Enterobacter sp. 198 can help convert these forms into plant-accessible phosphates and have shown promise in promoting plant growth, particularly under stress and nutrient deficiency.
  • Genomic analysis of these bacteria revealed important genes related to phosphorus solubilization and growth promotion, suggesting that Serratia sp. RJAL6 may be classified as a new species and holds potential as a biofertilizer in agriculture.
View Article and Find Full Text PDF

Aluminum (Al)-tolerant phosphobacteria enhance plant growth in acidic soils by improving Al complexing and phosphorus (P) availability. However, the impact of Al stress and P deficiency on bacterial biochemistry and physiology remains unclear. We investigated the single and mutual effects of Al stress (10 mM) and P deficiency (0.

View Article and Find Full Text PDF

Climate change challenges modern agriculture to develop alternative and eco-friendly solutions to alleviate abiotic and/or biotic stresses. The use of soil microbiomes from extreme environments opens new avenues to discover novel microorganisms and microbial functions to protect plants. In this study we confirm the ability of a bioinoculant, generated by natural engineering, to promote host development under water stress.

View Article and Find Full Text PDF

The present study examined the biosynthesis and characterization of selenium nanoparticles (SeNPs) using two contrasting endophytic selenobacteria, one Gram-positive ( sp. E5 identified as ) and one Gram-negative ( sp. EC5.

View Article and Find Full Text PDF

One of the most challenging aspects of long-term research based on microorganisms is the maintenance of isolates under ex situ conditions, particularly the conservation of phytopathological characteristics. Our research group has worked for more than 10 years with var. (Ggt), the main biotic factor affecting wheat.

View Article and Find Full Text PDF

Thraustochytrids are aquatic unicellular protists organisms that represent an important reservoir of a wide range of bioactive compounds, such as essential polyunsaturated fatty acids (PUFAs) such as arachidonic acid (ARA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), which are involved in the regulation of the immune system. In this study, we explore the use of co-cultures of sp. and bacteria as a biotechnological tool capable of stimulating PUFA bioaccumulation.

View Article and Find Full Text PDF

The major priority of research in the present day is to conserve the environment by reducing GHG emissions. A proposed solution by an expert panel from 195 countries meeting at COP 21 was to increase global SOC stocks by 0.4% year to compensate for GHG emissions, the ' agreement.

View Article and Find Full Text PDF

Crop migration caused by climatic events has favored the emergence of new soilborne diseases, resulting in the colonization of new niches (emerging infectious diseases, EIDs). Soilborne pathogens are extremely persistent in the environment. This is in large part due to their ability to reside in the soil for a long time, even without a host plant, using survival several strategies.

View Article and Find Full Text PDF

The presence of fungi in pristine Antarctic soils is of particular interest because of the diversity of this microbial group. However, the extreme conditions that coexist in Antarctica produce a strong selective pressure that could lead to the evolution of novel mechanisms for stress tolerance by indigenous microorganisms. For this reason, in recent years, research on cold-adapted microorganisms has increased, driven by their potential value for applications in biotechnology.

View Article and Find Full Text PDF

var. (Ggt) is the main soilborne factor that affects wheat production around the world. Recently we reported the occurrence of six suppressive soils in monoculture areas from indigenous "Mapuche" communities, and evidenced that the suppression relied on the biotic component of those soils.

View Article and Find Full Text PDF

Plants from the Proteaceae family can thrive in old, impoverished soil with extremely low phosphorus (P) content, such as those typically found in South Western Australia (SWA) and South Africa. The South Western (SW) Australian Proteaceae species have developed strategies to deal with P scarcity, such as the high capacity to re-mobilize P from senescent to young leaves and the efficient use of P for carbon fixation. In Southern South America, six Proteaceae species grow in younger soils than those of SWA, with a wide variety of climatic and edaphic conditions.

View Article and Find Full Text PDF

Phosphobacteria, secreting organic acids and phosphatases, usually favor plant performance in acidic soils by increasing phosphorus (P) availability and aluminum (Al) complexing. However, it is not well-known how P-deficiency and Al-toxicity affect the phosphobacteria physiology. Since P and Al problems often co-occur in acidic soils, we have therefore proposed the evaluation of the single and combined effects of P-deficiency and Al-toxicity on growth, organic acids secretion, malate dehydrogenase () gene expression, and phosphatase activity of five Al-tolerant phosphobacteria previously isolated from ryegrass.

View Article and Find Full Text PDF