Despite the significant potential of protein biosensors, their construction remains a trial-and-error process. The most obvious approach for addressing this is to utilize modular biosensor architectures where specificity-conferring modalities can be readily generated to recognize new targets. Toward this goal, we established a workflow that uses mRNA display-based selection of hyper-stable monobody domains for the target of choice or ribosome display to select equally stable DARPins.
View Article and Find Full Text PDFThe construction and assembly of artificial allosteric protein switches into information and energy processing networks connected to both biological and non-biological systems is a central goal of synthetic biology and bionanotechnology. However, designing protein switches with the desired input, output and performance parameters is challenging. Here we use a range of reporter proteins to demonstrate that their chimeras with duplicated receptor domains produce YES gate protein switches with large (up to 9,000-fold) dynamic ranges and fast (minutes) response rates.
View Article and Find Full Text PDFThe emergence of viral threats such as Ebola, ZIKA, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requires a rapid and efficient approach for elucidating mechanisms of pathogenesis and development of therapeutics. In this context, cell-free protein synthesis (CFPS) holds a promise to resolve the bottlenecks of multiplexed protein production and interaction analysis among host and pathogen proteins. Here, we applied a eukaryotic CFPS system based on extract (LTE) protein expression in combination with AlphaLISA proximity-based protein interaction technology to identify intraviral and viral-human protein interactions of SARS-CoV-2 virus that can potentially be targeted by the existing or novel antiviral therapeutics.
View Article and Find Full Text PDFBiological information processing networks rely on allosteric protein switches that dynamically interconvert biological signals. Construction of their artificial analogues is a central goal of synthetic biology and bioengineering. Receptor domain insertion is one of the leading methods for constructing chimeric protein switches.
View Article and Find Full Text PDFAllostery enables proteins to interconvert different biochemical signals and form complex metabolic and signaling networks. We hypothesize that circular permutation of proteins increases the probability of functional coupling of new N- and C- termini with the protein's active center through increased local structural disorder. To test this we construct a synthetically allosteric version of circular permutated NanoLuc luciferase that can be activated through ligand-induced intramolecular non-covalent cyclisation.
View Article and Find Full Text PDFNatural evolution produced polypeptides that selectively recognize chemical entities and their polymers, ranging from ions to proteins and nucleic acids. Such selective interactions serve as entry points to biological signaling and metabolic pathways. The ability to engineer artificial versions of such entry points is a key goal of synthetic biology, bioengineering and bioelectronics.
View Article and Find Full Text PDFEnzymatic polypeptide proteolysis is a widespread and powerful biological control mechanism. Over the last few years, substantial progress has been made in creating artificial proteolytic systems where an input of choice modulates the protease activity and thereby the activity of its substrates. However, all proteolytic systems developed so far have relied on the direct proteolytic cleavage of their effectors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2022
Protein biosensors play an increasingly important role as reporters for research and clinical applications. Here we present an approach for the construction of fully integrated but modular electrochemical biosensors based on the principal component of glucose monitors PQQ-glucose dehydrogenase (PQQ-GDH). We designed allosterically regulated circular permutated variants of PQQ-GDH that show large (>10-fold) changes in enzymatic activity following intramolecular scaffolding of the newly generated N- and C termini by ligand binding domain/ligand complexes.
View Article and Find Full Text PDFThe ability of proteins to interconvert unrelated biochemical inputs and outputs underlays most energy and information processing in biology. A common conversion mechanism involves a conformational change of a protein receptor in response to a ligand binding or a covalent modification, leading to allosteric activity modulation of the effector domain. Designing such systems rationally is a central goal of synthetic biology and protein engineering.
View Article and Find Full Text PDFThe rapid spread of arthropod-borne Zika virus poses a serious public health threat that calls for effective ways of controlling and treating viral infection. This in turn necessitates better understanding of the mechanisms of virus assembly and its interaction with the host cells. In order to facilitate such efforts, we developed a new multihost expression vector pmCellFree that allows rapid and multiplexed production of ZIKV proteins in any in vitro translation system as well as in mammalian cells.
View Article and Find Full Text PDFAllosteric protein switches are key controllers of information and energy processing in living organisms and are desirable engineered control tools in synthetic systems. Here we present a generally applicable strategy for construction of allosteric signaling systems with inputs and outputs of choice. We demonstrate conversion of constitutively active enzymes into peptide-operated synthetic allosteric ON switches by insertion of a calmodulin domain into rationally selected sites.
View Article and Find Full Text PDFThe α-proteobacterium Wolbachia pipientis infects more than 65% of insect species worldwide and manipulates the host reproductive machinery to enable its own survival. It can live in mutualistic relationships with hosts that cause human disease, including mosquitoes that carry the Dengue virus. Like many other bacteria, Wolbachia contains disulfide bond forming (Dsb) proteins that introduce disulfide bonds into secreted effector proteins.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
October 2013
The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified.
View Article and Find Full Text PDFThe enzyme TcpG is a periplasmic protein produced by the Gram-negative pathogen Vibrio cholerae. TcpG is essential for the production of ToxR-regulated proteins, including virulence-factor pilus proteins and cholera toxin, and is therefore a target for the development of a new class of anti-virulence drugs. Here, the 1.
View Article and Find Full Text PDFSince its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin.
View Article and Find Full Text PDFThe Janus kinases (JAKs) are a pivotal family of protein tyrosine kinases (PTKs) that play prominent roles in numerous cytokine signaling pathways, with aberrant JAK activity associated with a variety of hematopoietic malignancies, cardiovascular diseases and immune-related disorders. Whereas the structures of the JAK2 and JAK3 PTK domains have been determined, the structure of the JAK1 PTK domain is unknown. Here, we report the high-resolution crystal structures of the "active form" of the JAK1 PTK domain in complex with two JAK inhibitors, a tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one (CMP6) and (3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile (CP-690,550), and compare them with the corresponding JAK2 PTK inhibitor complexes.
View Article and Find Full Text PDF