Publications by authors named "Patricia W M Ho"

Parathyroid hormone-related protein (PTHrP, gene name Pthlh) is a pleiotropic regulator of tissue homeostasis. In bone, Dmp1Cre-targeted PTHrP deletion in osteocytes causes osteopenia and impaired cortical strength. We report here that this outcome depends on parental genotype.

View Article and Find Full Text PDF

Parathyroid hormone (PTH)-related protein (PTHrP) (gene name Pthlh) was discovered as the factor responsible for the humoral hypercalcemia of malignancy. It shares such sequence similarity with PTH in the amino-terminal region that the two are equally able to act through a single G protein-coupled receptor, PTH1R. A number of biological activities are ascribed to domains of PTHrP beyond the amino-terminal domain.

View Article and Find Full Text PDF

Interleukin 6 (IL-6) supports development of bone-resorbing osteoclasts by acting early in the osteoblast lineage via membrane-bound () or soluble () receptors. Here, we investigated how IL-6 signals and modifies gene expression in differentiated osteoblasts and osteocytes and determined whether these activities can promote bone formation or support osteoclastogenesis. Moreover, we used a genetically altered mouse with circulating levels of the pharmacological IL-6 -signaling inhibitor sgp130-Fc to determine whether IL-6 -signaling is required for normal bone growth and remodeling.

View Article and Find Full Text PDF

The loss of p53 function is a central event in the genesis of osteosarcoma (OS). How mutation of p53 enables OS development from osteoblastic lineage cells is poorly understood. We and others have reported a key role for elevated and persistent activation of the cAMP/PKA/Creb1 pathway in maintenance of OS.

View Article and Find Full Text PDF

Parathyroid hormone-related protein (PTHrP) expression in breast cancer is enriched in bone metastases compared to primary tumors. Human MCF7 breast cancer cells "home" to the bones of immune deficient mice following intracardiac inoculation, but do not grow well and stain negatively for Ki67, thus serving as a model of breast cancer dormancy . We have previously shown that PTHrP overexpression in MCF7 cells overcomes this dormant phenotype, causing them to grow as osteolytic deposits, and that PTHrP-overexpressing MCF7 cells showed significantly lower expression of genes associated with dormancy compared to vector controls.

View Article and Find Full Text PDF

The majority of the skeleton arises by endochondral ossification, whereby cartilaginous templates expand and are resorbed by osteoclasts then replaced by osteoblastic bone formation. Ephrin B2 is a receptor tyrosine kinase expressed by osteoblasts and growth plate chondrocytes that promotes osteoblast differentiation and inhibits osteoclast formation. We investigated the role of ephrin B2 in endochondral ossification using Osx1Cre-targeted gene deletion.

View Article and Find Full Text PDF

Parathyroid hormone (PTH) treatment stimulates osteoblast differentiation and bone formation, and is the only currently approved anabolic therapy for osteoporosis. In cells of the osteoblast lineage, PTH also stimulates the expression of members of the interleukin 6 (IL-6) cytokine superfamily. Although the similarity of gene targets regulated by these cytokines and PTH suggest cooperative action, the dependence of PTH anabolic action on IL-6 cytokine signaling is unknown.

View Article and Find Full Text PDF

Cells that form bone (osteoblasts) express both ephrinB2 and EphB4, and previous work has shown that pharmacological inhibition of the ephrinB2/EphB4 interaction impairs osteoblast differentiation in vitro and in vivo. The purpose of this study was to determine the role of ephrinB2 signaling in the osteoblast lineage in the process of bone formation. Cultured osteoblasts from mice with osteoblast-specific ablation of ephrinB2 showed delayed expression of osteoblast differentiation markers, a finding that was reproduced by ephrinB2, but not EphB4, RNA interference.

View Article and Find Full Text PDF

Osteosarcoma is the most common primary cancer of bone and one that predominantly affects children and adolescents. Osteoblastic osteosarcoma represents the major subtype of this tumor, with approximately equal representation of fibroblastic and chondroblastic subtypes. We and others have previously described murine models of osteosarcoma based on osteoblast-restricted Cre:lox deletion of Trp53 (p53) and Rb1 (Rb), resulting in a phenotype most similar to fibroblastic osteosarcoma in humans.

View Article and Find Full Text PDF

Previous reports indicate that ephrinB2 expression by osteoblasts is stimulated by parathyroid hormone (PTH) and its related protein (PTHrP) and that ephrinB2/EphB4 signaling between osteoblasts and osteoclasts stimulates osteoblast differentiation while inhibiting osteoclast differentiation. To determine the role of the ephrinB2/EphB4 interaction in the skeleton, we used a specific inhibitor, soluble EphB4 (sEphB4), in vitro and in vivo. sEphB4 treatment of cultured osteoblasts specifically inhibited EphB4 and ephrinB2 phosphorylation and reduced mRNA levels of late markers of osteoblast/osteocyte differentiation (osteocalcin, dentin matrix protein-1 [DMP-1], sclerostin, matrix-extracellular phosphoglycoprotein [MEPE]), while substantially increasing RANKL.

View Article and Find Full Text PDF

Parathyroid hormone (PTH) is the only approved anabolic agent for osteoporosis treatment. It acts via osteoblasts to stimulate both osteoclast formation and bone formation, with the balance between these two activities determined by the mode of administration. Oncostatin M (OSM), a gp130-dependent cytokine expressed by osteoblast lineage cells, has similar effects and similar gene targets in the osteoblast lineage.

View Article and Find Full Text PDF

PDE4 inhibitors have been identified as therapeutic targets for a variety of conditions, particularly inflammatory diseases. We have serendipitously identified a novel class of phosphodiesterase 4 (PDE4) inhibitor during a study to discover antagonists of the parathyroid hormone receptor. X-ray crystallographic studies of PDE4D2 complexed to four potent inhibitors reveal the atomic details of how they inhibit the enzyme and a notable contrast to another recently reported thiophene-based inhibitor.

View Article and Find Full Text PDF

Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor.

View Article and Find Full Text PDF

Bone morphogenetic protein-2 (BMP-2) is strongly involved in the induction of osteoblast differentiation from mesenchymal cell precursors, as well as in enhancing bone matrix production by osteoblastic cells. Likewise, the osteoporotic phenotype of PTHrP deficient mice makes clear the importance of this paracrine regulator in bone physiology. Here, we report that BMP-2 rapidly down-regulated PTHrP gene expression through a transcriptional mechanism in pluripotent mesenchymal C2C12 cells, whereas BMP-2 increased expression of PTHrP receptor.

View Article and Find Full Text PDF

In order to study osteoblast differentiation we subcloned a cell derived from a mouse a bone marrow stromal cell line, Kusa O, and obtained a number of clones representative of three different phenotypes. One that neither differentiated into osteoblasts nor into adipocytes, a second that differentiated into osteoblasts but not adipocytes, and a third that differentiated into both osteoblasts and adipocytes. Four subclones were selected for further characterization according to their ability to mineralize and/or differentiate into adipocytes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session09jpegoqlb5bjrsmib1nbnp5rhfbr01r): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once