Publications by authors named "Patricia Trotel-Aziz"

Species from the Botryosphaeriaceae family are the causal agents of Botryosphaeria dieback (BD), a worldwide grapevine trunk disease. Because of their lifestyle and their adaptation to a wide range of temperatures, these fungi constitute a serious threat to vineyards and viticulture, especially in the actual context of climate change. Grapevine plants from both nurseries and vineyards are very susceptible to infections by botryosphaeriaceous fungi due to several cuts and wounds made during their propagation process and their entire life cycle, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • - Grapevine trunk diseases (GTDs) negatively impact wine production globally, prompting research into biocontrol agents (BCAs) like Trichoderma atroviride (Ta) SC1 and Bacillus subtilis (Bs) PTA-271 for disease prevention during grapevine propagation.
  • - Experiments showed that using Ta SC1 and Bs PTA-271 significantly reduced the number of potentially infected grapevine plants and the isolation of harmful pathogens associated with Botryosphaeria dieback and black-foot disease.
  • - Although these biocontrol treatments show promise for managing GTDs, more research is required to fully understand the effectiveness of Bs PTA-271 and the benefits of using these BCAs together.
View Article and Find Full Text PDF

This review provides an overview on the role of camalexin in plant immunity taking into account various plant-pathogen and beneficial microbe interactions, regulation mechanisms and the contribution in basal and induced plant resistance. In a hostile environment, plants evolve complex and sophisticated defense mechanisms to counteract invading pathogens and herbivores. Several lines of evidence support the assumption that secondary metabolites like phytoalexins which are synthesized de novo, play an important role in plant defenses and contribute to pathogens' resistance in a wide variety of plant species.

View Article and Find Full Text PDF

Two isolates and a UV mutant were characterized for their phytotoxin production in vitro, their pathogenicity on grapevine, and their genome sequenced. The isolate Np-Bt67 produced high level of (-)-terremutin, but almost no ()-mellein, and it was the most aggressive on grapevine, triggering apoplexy. Similar symptoms were not induced by purified (-)-terremutin.

View Article and Find Full Text PDF

Copper-based preparations have been used for more than 100 years in viticulture to control downy mildew caused by . LC2017, and a new low-copper-based formulation, has been developed to control grapevine trunk diseases (GTDs). Previous greenhouse studies showed the potential of LC2017 to control GTDs by both fungistatic and plant defense elicitor effects.

View Article and Find Full Text PDF

Plants harbor various beneficial microbes that modulate their innate immunity, resulting in induced systemic resistance (ISR) against a broad range of pathogens. Camalexin is an integral part of Arabidopsis innate immunity, but the contribution of its biosynthesis in ISR is poorly investigated. We focused on camalexin accumulation primed by two beneficial bacteria, Pseudomonas fluorescens and Bacillus subtilis, and its role in ISR against Botrytis cinerea and Pseudomonas syringae Pst DC3000.

View Article and Find Full Text PDF

Grapevine trunk diseases (GTDs) are a big threat for global viticulture. Without effective chemicals, biocontrol strategies are developed as alternatives to better cope with environmental concerns. A combination of biological control agents (BCAs) could even improve sustainable disease management through complementary ways of protection.

View Article and Find Full Text PDF

The growing concerns on human and environment health are forcing the plant protection industry toward the formulation of more eco-sustainable plant protection products (PPP), both efficient and innovative in their approach to disease control. A large number of these innovative formulations now rely on a combination of pathogens antagonistic properties and stimulation of natural plant defense to pathogens. The formulation HA + Cu(II), in which copper is delivered to the plants by the drug-delivery molecule hydroxyapatite (HA), was found efficient against the grapevine pathogens and and able to induce the host-plant defense system.

View Article and Find Full Text PDF

Background: Bacillus subtilis strains have been widely studied for their numerous benefits in agriculture, including viticulture. Providing several assets, B. subtilis spp.

View Article and Find Full Text PDF

Plants harbor various beneficial bacteria that modulate their innate immunity, resulting in induced systemic resistance (ISR) against various pathogens. However, the immune mechanisms underlying ISR triggered by Bacillus spp. and Pseudomonas spp.

View Article and Find Full Text PDF

Downy mildew caused by the oomycete and gray mold caused by the fungus are among the highly threatening diseases in vineyards. The current strategy to control these diseases relies totally on the application of fungicides. The use of beneficial microbes is arising as a sustainable strategy in controlling various diseases.

View Article and Find Full Text PDF

Plant pathogens have evolved various strategies to enter hosts and cause diseases. Particularly , a member of Botryosphaeria dieback consortium, can secrete the phytotoxins (-)-terremutin and ()-mellein during grapevine colonization. The contribution of phytotoxins to Botryosphaeria dieback symptoms still remains unknown.

View Article and Find Full Text PDF

Grapevine trunk diseases (GTDs) represent one of the most important problems for viticulture worldwide. Beyond the original causes of this outbreak in some countries like France, the lack of efficient control protocols and the prohibition of using active ingredients such as sodium arsenite and benzimidazoles, until recently used to reduce the impact of some GTDs but deleterious for humans and the environment, have probably worsened the impact of the diseases, leading to increasing economic losses. Since 1990, searches have been made to find efficient tools to control GTDs, testing a wide range of active ingredients and biocontrol agents.

View Article and Find Full Text PDF

Abiotic factors inducing osmotic stress can affect plant immunity and resistance against pathogen attack. Although a number of studies have characterized grapevine responses to various forms of biotic and abiotic stresses, the relationships between osmotic stress response and susceptibility of mature berries to still remain unknown. In this study, we investigated the effects of osmotic stress and abscisic acid (ABA) on defense responses of mature grapevine berries before and after infection.

View Article and Find Full Text PDF

Although induced systemic resistance (ISR) is well-documented in the context of plant-beneficial bacteria interactions, knowledge about the local and systemic molecular and biochemical defense responses before or upon pathogen infection in grapevine is very scarce. In this study, we first investigated the capacity of grapevine plants to express immune responses at both above- and below-ground levels upon interaction with a beneficial bacterium, Pseudomonas fluorescens PTA-CT2. We then explored whether the extent of priming state could contribute to the PTA-CT2-induced ISR in Botrytis cinerea-infected leaves.

View Article and Find Full Text PDF

Environmental factors including drought stress may modulate plant immune responses and resistance to pathogens. However, the relationship between mechanisms of drought tolerance and resistance to pathogens remained unknown. In this study, the effects of drought stress on polyamine (PA) homeostasis and immune responses were investigated in two grapevine genotypes differing in their drought tolerance; Chardonnay (CHR), as sensitive and Meski (MSK), as tolerant.

View Article and Find Full Text PDF

Abiotic factors inducing osmotic stress can influence the plant immune response and resistance to pathogen infections. In this study, the effect of polyethylene glycol (PEG)- and sucrose-induced osmotic stress on polyamine (PA) homeostasis and the basal immune response in grapevine plantlets before and after Botrytis cinerea infection was determined. Pharmacological approaches were also addressed to assess the contribution of osmotic stress-induced PA oxidation to the regulation of defence responses and the susceptibility of grapevine to B.

View Article and Find Full Text PDF

Effects of two fungicides, copper and dimethomorph ((E,Z)4-[3-(4-chlorophenyl)-3-(3-4dimethoxyphenyl) acryloyl] morpholine) on Lemna minor growth and phytoremediation were evaluated. The toxicity of copper and dimethomorph alone and in combination, was assessed by growth inhibition of L. minor cultures after 96 and 168 h.

View Article and Find Full Text PDF

Bacteria such as Pantoea agglomerans (Pa-AF2), Bacillus subtilis (Bs-271), Acinetobacter lwoffii (Al-113), and Pseudomonas fluorescens (Pf-CT2), originating from the vineyard, can induce defense responses and enhance resistance of grapevine against the fungal pathogen Botrytis cinerea. The perception of these bacteria by plant cells or tissues in relation to their activities remains unknown. In this study, we examined the relationships between the activity of each bacterium to induce or prime some defense responses, and its effectiveness to induce resistance in grapevine against B.

View Article and Find Full Text PDF

Remediation capacities of two freshwater microalgae, Scenedesmus obliquus and Scenedesmus quadricauda, were assessed for the removal of two fungicides (dimethomorph and pyrimethanil) and one herbicide (isoproturon) from their medium. To ensure these studies were performed with healthy algae, pesticide effects where first apprehended on chlorophyll a fluorescence emission and growth rate. After a 4d-exposure to 600 microg L(-1) of dimethomorph or pyrimethanil, or to 10 microg L(-1) of isoproturon, algal growth rate and some of their photosynthetic processes were weakly affected (< 30% variation).

View Article and Find Full Text PDF

Non-pathogenic rhizobacteria Pseudomonas spp. can reduce disease in plant tissues through induction of a defence state known as induced systemic resistance (ISR). This resistance is based on multiple bacterial determinants, but nothing is known about the mechanisms underlying rhizobacteria-induced resistance in grapevine.

View Article and Find Full Text PDF

ABSTRACT Chitosan (CHN), a deacetylated derivative of chitin, was shown to be efficient in promoting plant defense reactions. CHN oligomers of different molecular weight (MW) and degree of acetylation (DA) triggered an accumulation of phytoalexins, trans- and cis-resveratrol and their derivatives epsilon-viniferin and piceid, in grapevine leaves. Highest phytoalexin production was achieved within 48 h of incubation with CHN at 200 mug/ml with an MW of 1,500 and a DA of 20% (CHN1.

View Article and Find Full Text PDF