Publications by authors named "Patricia Ternes"

This paper explores the use of a particle filter-a data assimilation method-to incorporate real-time data into an agent-based model. We apply the method to a simulation of real pedestrians moving through the concourse of Grand Central Terminal in New York City (USA).  The results show that the particle filter does not perform well due to (i) the unpredictable behaviour of some pedestrians and (ii) because the filter does not optimise the categorical agent parameters that are characteristic of this type of model.

View Article and Find Full Text PDF

In this article, we investigate, through molecular dynamics simulations, the diffusion behavior of the TIP4P/2005 water confined in pristine and deformed carbon nanotubes (armchair and zigzag). To analyze different diffusive mechanisms, the water temperature was varied as 210 ≤ T ≤ 380 K. The results of our simulations reveal that water presents a non-Arrhenius to Arrhenius diffusion crossover.

View Article and Find Full Text PDF

We use molecular dynamics simulations to study the diffusion of water inside deformed carbon nanotubes with different degrees of deformation at 300 K. We found that the number of hydrogen bonds that water forms depends on nanotube topology, leading to enhancement or suppression of water diffusion. The simulation results reveal that more realistic nanotubes should be considered to understand the confined water diffusion behavior, at least for the narrowest nanotubes, when the interaction between water molecules and carbon atoms is relevant.

View Article and Find Full Text PDF

The slip of a fluid layer in contact with a solid confining surface is investigated for different temperatures and densities using molecular dynamic simulations. We show that for an anomalous waterlike fluid the slip goes as follows: for low levels of shear, defect slip appears and is related to the particle exchange between the fluid layers; at high levels of shear, global slip occurs and is related to the homogeneous distribution of the fluid in the confining surfaces. The oscillations in the transition velocity from defect to global slip are shown to be associated with changes in the layering distribution in the anomalous fluid.

View Article and Find Full Text PDF

In this work, we used a generalized Frenkel-Kontorova model to study the mobility of water molecules inside carbon nanotubes with small radius at low temperatures. Our simulations show that the mobility of confined water decreases monotonically increasing the amplitude of the substrate potential at fixed commensurations. On the other hand, the mobility of the water molecules shows a non-monotonic behavior when varying the commensuration.

View Article and Find Full Text PDF