Acute kidney injury (AKI) is frequently seen in patients with hemorrhagic shock due to hypotension, tissue hypoxia, and inflammation despite adequate resuscitation. There is a lack of information concerning the alteration of renal microcirculation and perfusion during shock and resuscitation. The aim of this study was to investigate the possible role of renal microcirculatory alterations on development of renal dysfunction in a pig model of non-traumatic hemorrhagic shock (HS) induced AKI.
View Article and Find Full Text PDFBackground: Platelets (PLTs) differ in glycolytic activity, resulting in rapid acidification of 'poor' storing PLT concentrates (PCs) in plasma, or depletion of glucose when stored in PLT additive solution (PAS). We aimed to understand why PLT glycolysis rates vary between donors and how this affects storage performance.
Study Design And Methods: Buffy coats from donors <45, 45-70 and >70 years were selected and single-donor PCs in plasma or PAS-E were prepared.
Mitochondrial dysfunction has been linked to disease progression in COVID-19 patients. This observational pilot study aimed to assess mitochondrial function in COVID-19 patients at intensive care unit (ICU) admission (T1), seven days thereafter (T2), and in healthy controls and a general anesthesia group. Measurements consisted of in vivo mitochondrial oxygenation and oxygen consumption, in vitro assessment of mitochondrial respiration in platelet-rich plasma (PRP) and peripheral blood mononuclear cells (PBMCs), and the ex vivo quantity of circulating cell-free mitochondrial DNA (mtDNA).
View Article and Find Full Text PDFAcute normovolemic hemodilution (ANH) is associated with low oxygen carrying capacity of blood and purposed to cause renal injury in perioperative setting. It is best accomplished in a perioperative setting by a colloid such as hydroxyl ethyl starch (HES) due its capacity to fill the vascular compartment and maintain colloidal pressure. However, alterations of intra renal microvascular perfusion, flow and its effects on renal function and damage during ANH has not been sufficiently clarified.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2021
In the above article [1], the authors regret that there was a mistake in calculating the mol% of the microbubble coating composition used. For all experiments, the unit in mg/mL was utilized and the conversion mistake only came when converting to mol% in order to define the ratio between the coating formulation components. The correct molecular weight of PEG-40 stearate is 2046.
View Article and Find Full Text PDFMitochondrial function has been predominantly measured ex vivo. Due to isolation and preservation procedures ex vivo measurements might misrepresent in vivo mitochondrial conditions. Direct measurement of in vivo mitochondrial oxygen tension (mitoPO) and oxygen disappearance rate (ODR) with the protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) might increase our understanding of mitochondrial dysfunction in the pathophysiology of acute disease.
View Article and Find Full Text PDFBackground: Visible light spectroscopy (VLS) is a technique used to measure the mucosal oxygen saturation during upper gastrointestinal endoscopy to evaluate mucosal ischemia, however in vivo validation is lacking. We aimed to compare VLS measurements with a validated quantitative microvascular oxygen tension (μPO) measurement technique.
Methods: Simultaneous VLS measurements and μPO measurements were performed on the small intestine of five pigs.
Objectives: We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury.
Design: Prospective controlled animal experiment study.
Setting: Hospital-affiliated animal research institution.
IEEE Trans Ultrason Ferroelectr Freq Control
March 2017
Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially available UCAs for high-frequency CEUS (hfCEUS) is largely unknown, while shell properties have been shown to be an important factor for their performance. The aim of our study was to produce UCAs in-house for hfCEUS.
View Article and Find Full Text PDFPurpose: Ventilatory inhomogeneity indexes in critically ill mechanically ventilated patients could be of importance to optimize ventilator settings in order to reduce additional lung injury. The present study compared six inhomogeneity indexes calculated from the oxygen washout curves provided by the rapid oxygen sensor of the LUFU end-expiratory lung volume measurement system.
Methods: Inhomogeneity was tested in a porcine model before and after induction of acute lung injury (ALI) at four different levels of positive end-expiratory pressure (PEEP; 15, 10, 5 and 0 cm H2O).
Background: The leading cause of mortality due to pulmonary arterial hypertension (PAH) is failure of the cardiac right ventricle. It has long been hypothesized that during the development of chronic cardiac failure the heart becomes energy deprived, possibly due to shortage of oxygen at the level of cardiomyocyte mitochondria. However, direct evaluation of oxygen tension levels within the in vivo right ventricle during PAH is currently lacking.
View Article and Find Full Text PDFObjective: The objective of this paper was to determine the effect of neuromuscular blockade (NMB) on working space in a porcine laparoscopy model.
Background: Conflicting results on the effect of NMB on laparoscopic working space are found in literature. Almost all studies are limited by absence of objective assessment of working space or use surrogate outcomes.
Oxygen delivery and metabolism represent key factors for organ function in health and disease. We describe the optical key characteristics of a technique to comprehensively measure oxygen tension (PO(2)) in myocardium, using oxygen-dependent quenching of phosphorescence and delayed fluorescence of porphyrins, by means of Monte Carlo simulations and ex vivo experiments. Oxyphor G2 (microvascular PO(2)) was excited at 442 nm and 632 nm and protoporphyrin IX (mitochondrial PO(2)) at 510 nm.
View Article and Find Full Text PDFAims: Hemoglobin-based oxygen carriers (HBOC) provide a potential alternative to red blood cell (RBC) transfusion. Their clinical application has been limited by adverse effects, in large part thought to be mediated by the intravascular scavenging of the vasodilator nitric oxide (NO) by cell-free plasma oxy-hemoglobin. Free hemoglobin may also cause endothelial dysfunction and platelet activation in hemolytic diseases and after transfusion of aged stored RBCs.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) is a devastating clinical syndrome. Angiotensin-converting enzyme (ACE) and its effector peptide angiotensin (Ang) II have been implicated in the pathogenesis of ARDS. A counter-regulatory enzyme of ACE, ie ACE2 that degrades Ang II to Ang-(1-7), offers a promising novel treatment modality for this syndrome.
View Article and Find Full Text PDFAngiotensin-converting enzyme (ACE) mediates the ventilator-induced inflammatory response in healthy lungs via angiotensin II (Ang II). A rat model was used to examine the role of ACE and Ang II in the inflammatory response during mechanical ventilation of preinjured (ie, lipopolysaccharide [LPS]-exposed) lungs. When indicated, rats were pretreated with the ACE inhibitor captopril and/or intratracheal administration of LPS.
View Article and Find Full Text PDFBackground: Esophagectomy with gastric tube reconstruction is the surgical treatment for cancer of the esophagus. Perfusion of the anastomotic site of the tube depends exclusively on microcirculation, making it susceptible to hypoperfusion. It is unknown whether vasodilatation is superior to increased perfusion pressure to improve gastric tissue perfusion of the anastomosis.
View Article and Find Full Text PDFIntroduction: Results from clinical studies have provided evidence for the importance of leukocyte-endothelial interactions in the pathogenesis of pulmonary diseases such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), as well as in systemic events like sepsis and multiple organ failure (MOF). The present study was designed to investigate whether alveolar stretch due to mechanical ventilation (MV) may evoke endothelial activation and inflammation in healthy mice, not only in the lung but also in organs distal to the lung.
Methods: Healthy male C3H/HeN mice were anesthetized, tracheotomized and mechanically ventilated for either 1, 2 or 4 hours.
Myocardial blood flow and oxygen consumption are heterogeneously distributed. Perfusion and myocardial oxygen consumption are closely correlated in the normal heart. It is unknown how this metabolism-perfusion relation is influenced by sympathetic denervation.
View Article and Find Full Text PDFBackground: Previous studies showed that combining the Rf-1 and Rf-3 or Rf-4 QTLs of FHH induced synergistic interactions markedly enhancing renal susceptibility. The present study aimed to determine the presence of such interaction between the Rf-1 and Rf-5 QTLs.
Methods: Renal damage susceptibility was assessed in Rf-1B, Rf-1B+5, Rf-1B+4 congenics and ACI control rats in four situations: two-kidney control (2K), unilateral nephrectomy (UNX), L-NAME-induced hypertension (2K+L-NAME) and UNX+L-NAME.
Background: Five quantitative trait loci (QTLs), Rf-1 to Rf-5, were found in Fawn-Hooded hypertensive (FHH) rats influencing susceptibility to renal damage. Previously, we found that single transfer of the Rf-1 QTL from FHH rats onto the renal-resistant August x Copenhagen Irish (ACI) strain caused a small increase in renal susceptibility. To investigate the separate role of the Rf-4 QTL and its interaction with Rf-1, we generated a single congenic strain carrying Rf-4 and a double congenic carrying both Rf-1 and Rf-4.
View Article and Find Full Text PDFBackground: Linkage analyses of crosses of rats susceptible to renal damage, fawn-hooded hypertensive (FHH), and those resistant to kidney damage, August x Copenhagen Irish (ACI), indicated that five quantitative trait loci (QTLs), Rf-1 to Rf-5, influence proteinuria (UPV), albuminuria (UAV) and focal glomerulosclerosis (FGS). Here we present data obtained in congenic rats to directly assess the role of the Rf-1 and Rf-5 QTLs.
Methods: Renal damage (UPV, UAV, and FGS) was assessed in ACI, ACI.