Publications by authors named "Patricia Soranno"

Peer-review and subject-matter editing is the backbone of scientific publishing. However, early-career researchers (ECRs) are given few opportunities to participate in the editorial process beyond reviewing articles. Thus, a disconnect exists: science needs high-quality editorial talent to conduct, oversee and improve the publishing process, yet we dedicate few resources to building editorial talent nor giving ECRs formal opportunities to influence publishing from within.

View Article and Find Full Text PDF

The effect of nutrients on phytoplankton biomass in lakes continues to be a subject of debate by aquatic scientists. However, determining whether or not chlorophyll a (CHL) is limited by phosphorus (P) and/or nitrogen (N) is rarely considered using a probabilistic method in studies of hundreds of lakes across broad spatial extents. Several studies have applied a unified CHL-nutrient relationship to determine nutrient limitation, but pose a risk of ecological fallacy because they neglect spatial heterogeneity in ecological contexts.

View Article and Find Full Text PDF

Although ecosystems respond to global change at regional to continental scales (i.e., macroscales), model predictions of ecosystem responses often rely on data from targeted monitoring of a small proportion of sampled ecosystems within a particular geographic area.

View Article and Find Full Text PDF

Faced with limitations in data availability, funding, and time constraints, ecologists are often tasked with making predictions beyond the range of their data. In ecological studies, it is not always obvious when and where extrapolation occurs because of the multivariate nature of the data. Previous work on identifying extrapolation has focused on univariate response data, but these methods are not directly applicable to multivariate response data, which are common in ecological investigations.

View Article and Find Full Text PDF

Although spatial and temporal variation in ecological properties has been well-studied, crucial knowledge gaps remain for studies conducted at macroscales and for ecosystem properties related to material and energy. We test four propositions of spatial and temporal variation in ecosystem properties within a macroscale (1000 km's) extent. We fit Bayesian hierarchical models to thousands of observations from over two decades to quantify four components of variation - spatial (local and regional) and temporal (local and coherent); and to model their drivers.

View Article and Find Full Text PDF

Using cross-sectional data for making ecological inference started as a practical means of pooling data to enable meaningful empirical model development. For example, limnologists routinely use sample averages from numerous individual lakes to examine patterns across lakes. The basic assumption behind the use of cross-lake data is often that responses within and across lakes are identical.

View Article and Find Full Text PDF

Scientific research-especially high-impact research-is increasingly being performed in teams that are interdisciplinary and demographically diverse. Nevertheless, very little research has investigated how the climate on these diverse science teams affects data sharing or the experiences of their members. To address these gaps, we conducted a quantitative study of 266 scientists from 105 NSF-funded interdisciplinary environmental science teams.

View Article and Find Full Text PDF

Wildfires are becoming larger and more frequent across much of the United States due to anthropogenic climate change. No studies, however, have assessed fire prevalence in lake watersheds at broad spatial and temporal scales, and thus it is unknown whether wildfires threaten lakes and reservoirs (hereafter, lakes) of the United States. We show that fire activity has increased in lake watersheds across the continental United States from 1984 to 2015, particularly since 2005.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change poses significant threats to lake ecosystems, but there is a need for extensive studies to understand how different lakes respond to these changes based on geographic variations.
  • The study analyzed climate-water-clarity relationships in 365 lakes across the northeastern and midwestern US from 1981 to 2010, revealing that response patterns differ notably between regions.
  • Findings showed that in the northeast, water clarity decreased with increased summer precipitation, while in the midwest, clarity was affected more by higher summer temperatures, indicating limited influence of local ecological factors on lakes' climate sensitivity.
View Article and Find Full Text PDF

Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database.

View Article and Find Full Text PDF

The United States (U.S.) has faced major environmental changes in recent decades, including agricultural intensification and urban expansion, as well as changes in atmospheric deposition and climate-all of which may influence eutrophication of freshwaters.

View Article and Find Full Text PDF

In this commentary, we consider questions related to research integrity in data-intensive science and argue that there is no need to create a distinct category of misconduct that applies to deception related to processing, analyzing, or interpreting data. The best way to promote integrity in data-intensive science is to maintain a firm commitment to epistemological and ethical values, such as honesty, openness, transparency, and objectivity, which apply to all types of research, and to promote education, policy development, and scholarly debate concerning appropriate uses of statistics.

View Article and Find Full Text PDF

Understanding broad-scale ecological patterns and processes often involves accounting for regional-scale heterogeneity. A common way to do so is to include ecological regions in sampling schemes and empirical models. However, most existing ecological regions were developed for specific purposes, using a limited set of geospatial features and irreproducible methods.

View Article and Find Full Text PDF

Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio.

View Article and Find Full Text PDF

Overinclusive authorship practices such as honorary or guest authorship have been widely reported, and they appear to be exacerbated by the rise of large interdisciplinary collaborations that make authorship decisions particularly complex. Although many studies have reported on the frequency of honorary authorship and potential solutions to it, few have probed how the underlying dynamics of large interdisciplinary teams contribute to the problem. This article reports on a qualitative study of the authorship standards and practices of six National Science Foundation-funded interdisciplinary environmental science teams.

View Article and Find Full Text PDF

The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition.

View Article and Find Full Text PDF

Scientists have been debating for centuries the nature of proper scientific methods. Currently, criticisms being thrown at data-intensive science are reinvigorating these debates. However, many of these criticisms represent long-standing conflicts over the role of hypothesis testing in science and not just a dispute about the amount of data used.

View Article and Find Full Text PDF

Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents.

View Article and Find Full Text PDF

Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions.

View Article and Find Full Text PDF

Although there have been many recent calls for increased data sharing, the majority of environmental scientists do not make their individual data sets publicly available in online repositories. Current data-sharing conversations are focused on overcoming the technological challenges associated with data sharing and the lack of rewards and incentives for individuals to share data. We argue that the most important conversation has yet to take place: There has not been a strong ethical impetus for sharing data within the current culture, behaviors, and practices of environmental scientists.

View Article and Find Full Text PDF

Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty.

View Article and Find Full Text PDF

A classification system is often used to reduce the number of different ecosystem types that governmental agencies are charged with monitoring and managing. We compare the ability of several different hydrogeomorphic (HGM)-based classifications to group lakes for water chemistry/clarity. We ask: (1) Which approach to lake classification is most successful at classifying lakes for similar water chemistry/clarity? (2) Which HGM features are most strongly related to the lake classes? and, (3) Can a single classification successfully classify lakes for all of the water chemistry/clarity variables examined? We use univariate and multivariate classification and regression tree (CART and MvCART) analysis of HGM features to classify alkalinity, water color, Secchi, total nitrogen, total phosphorus, and chlorophyll a from 151 minimally disturbed lakes in Michigan USA.

View Article and Find Full Text PDF

Regionalization frameworks cluster geographic data to create contiguous regions of similar climate, geology and hydrology by delineating land into discrete regions, such as ecoregions or watersheds, often at several spatial scales. Although most regionalization schemes were not originally designed for aquatic ecosystem classification or management, they are often used for such purposes, with surprisingly few explicit tests of the relative ability of different regionalization frameworks to group lakes for water quality monitoring and assessment. We examined which of 11 different lake grouping schemes at two spatial scales best captures the maximum amount of variation in water quality among regions for total nutrients, water clarity, chlorophyll, overall trophic state, and alkalinity in 479 lakes in Michigan (USA).

View Article and Find Full Text PDF

We quantified potential biases associated with lakes monitored using non-probability based sampling by six state agencies in the USA (Michigan, Wisconsin, Iowa, Ohio, Maine, and New Hampshire). To identify biases, we compared state-monitored lakes to a census population of lakes derived from the National Hydrography Dataset. We then estimated the probability of lakes being sampled using generalized linear mixed models.

View Article and Find Full Text PDF

The ecoregion and watershed frameworks are landscape-based classifications that have been used to group waterbodies with respect to measures of community structure; however, they have yet to be evaluated for grouping lakes for demographic characteristics of fish populations. We used a multilevel modeling approach to determine if variability in mean fish length at age could be partitioned by ecoregions and watersheds. For the ecoregions analysis, we then examined if within-ecoregion variability could be explained by local water quality and lake morphometry characteristics.

View Article and Find Full Text PDF