Liposarcoma is the most prevalent sarcoma in adults representing 20% of all sarcomas with well-differentiated/dedifferentiated among the most common subtypes represented. Despite multimodality treatment approaches, there has not been any appreciable change in survival benefit in the past 10 years. The future of targeted therapy for WD/DDLPS is promising with the intention to spare multi-visceral removal due to radical surgical resection.
View Article and Find Full Text PDFAnalysis of single extracellular vesicles (EVs) has the potential to yield valuable label-free information on their morphological structure, biomarkers and therapeutic targets, though such analysis is hindered by the lack of reliable and quantitative measurements of the mechanical properties of these compliant nanoscale particles. The technical challenge in mechanical property measurements arises from the existing tools and methods that offer limited throughput, and the reported elastic moduli range over several orders of magnitude. Here, we report on a flow-based method complemented by transmission electron microscopy (TEM) imaging to provide a high throughput, whole EV deformation analysis for estimating the mechanical properties of liposarcoma-derived EVs as a function of their size.
View Article and Find Full Text PDFObjective: We aimed to assess the levels of MDM2-DNA within extracellular vesicles (EVs) isolated from the serum of retroperitoneal liposarcoma (RLS) patients versus healthy donors, as well as within the same patients at the time of surgery versus post-operative surveillance visits. To determine whether EV-MDM2 may serve as a possible first-ever biomarker of liposarcoma recurrence.
Background: A hallmark of well-differentiated and de-differentiated (WD/DD) retroperitoneal liposarcoma is elevated MDM2 due to genome amplification, with recurrence rates of >50% even after complete resection.
Dedifferentiated liposarcoma is a formidable sarcoma subtype due to its high local recurrence rate and resistance to medical treatment. While 2D cell cultures are still commonly used, 3D cell culture systems have emerged as a promising alternative, particularly scaffold-based techniques that enable the creation of 3D models with more accurate cell-stroma interactions. To investigate how 3D structures with or without the scaffold existence would affect liposarcoma cell lines growth morphologically and biologically.
View Article and Find Full Text PDFChemotherapy remains the mainstay of treatment for patients with advanced liposarcoma (LPS), but response rates are only 25% and the overall survival at 5 years is dismal at 20-34%. Translation of other therapies have not been successful and there has been no significant improvement in prognosis for nearly 20 years. The aberrant activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been implicated in the aggressive clinical behavior LPS and in resistance to chemotherapy, but the precise mechanism remains elusive and efforts to target AKT clinically have failed.
View Article and Find Full Text PDFSarcomas are rare malignancies, the number of reports is limited, and this rarity makes further research difficult even though liposarcoma is one of major sarcomas. 2D cell culture remains an important role in establishing basic tumor biology research, but its various shortcomings and limitations are still of concern, and it is now well-accepted that the behavior of 3D-cultured cells is more reflective of in vivo cellular responses compared to 2D models. This study aimed to establish 3D cell culture of liposarcomas using two different methods: scaffold-based (Matrigel extracellular matrix [ECM] scaffold method) and scaffold-free (Ultra-low attachment [ULA] plate).
View Article and Find Full Text PDFEVs have emerged as an important component in tumour initiation, progression and metastasis. Although notable progresses have been made, the detection of EV cargoes remain significantly challenging for researchers to practically use; faster and more convenient methods are required to validate the EV cargoes, especially as biomarkers. Here we show, the possibility of examining embedded EVs as substrates to be used for detecting DNA amplification through ultrasensitive in situ hybridization (ISH).
View Article and Find Full Text PDFInducible Cre recombinase facilitates temporal control of genetic recombination in numerous transgenic model systems, a feature which has made it a popular tool for adult neurogenesis studies. One of the most common forms of inducible Cre, CreER, requires activation by the selective estrogen receptor modulator tamoxifen (TAM) to initiate recombination of LoxP-flanked sequences. To date, most studies deliver TAM via intraperitoneal injection.
View Article and Find Full Text PDFThe dentate gyrus subregion of the mammalian hippocampus is an adult neural stem cell niche and site of lifelong neurogenesis. Hypotheses regarding the role of adult-born neuron synaptic integration in hippocampal circuit function are framed by robust estimations of adult-born versus pre/perinatally-born neuron number. In contrast, the non-neurogenic functions of adult neural stem cells and their immediate progeny, such as secretion of bioactive growth factors and expression of extracellular matrix-modifying proteins, lack similar framing due to few estimates of their number versus other prominent secretory cells.
View Article and Find Full Text PDFWe present a resource-efficient approach to fabricate and operate a micro-nanofluidic device that uses cross-flow filtration to isolate and capture liposarcoma derived extracellular vesicles (EVs). The isolated extracellular vesicles were captured using EV-specific protein markers to obtain vesicle enriched media, which was then eluted for further analysis. Therefore, the micro-nanofluidic device integrates the unit operations of size-based separation with CD63 antibody immunoaffinity-based capture of extracellular vesicles in the same device to evaluate EV-cargo content for liposarcoma.
View Article and Find Full Text PDFAdult hippocampal neural stem and progenitor cells (NSPCs) secrete a variety of proteins that affect tissue function. Though several individual NSPC-derived proteins have been shown to impact key cellular processes, a broad characterization is lacking. Secretome profiling of low abundance stem cell populations is typically achieved via proteomic characterization of in vitro, isolated cells.
View Article and Find Full Text PDF