Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods.
View Article and Find Full Text PDFElectrospun non-woven structures have the potential to form bioresorbable vascular grafts that promote tissue regeneration in situ as they degrade and are replaced by autologous tissue. Current bioresorbable grafts lack appropriate regeneration potential since they do not have optimal architecture, and their fabrication must be altered by the manipulation of process parameters, especially enhancing porosity. We describe here an air-impedance process where the solid mandrel is replaced with a porous mandrel that has pressurized air exiting the pores to impede fiber deposition.
View Article and Find Full Text PDFPlatelet-rich plasma (PRP) therapy has seen a recent spike in clinical interest due to the potential that the highly concentrated platelet solutions hold for stimulating tissue repair and regeneration. The aim of this study was to incorporate PRP into a number of electrospun materials to determine how growth factors are eluted from the structures, and what effect the presence of these factors has on enhancing electrospun scaffold bioactivity. PRP underwent a freeze-thaw-freeze process to lyse platelets, followed by lyophilization to create a powdered preparation rich in growth factors (PRGF), which was subsequently added to the electrospinning process.
View Article and Find Full Text PDFThe process of electrospinning has seen a resurgence of interest in the last few decades which has led to a rapid increase in the amount of research devoted to its use in tissue engineering applications. Of this research, the area of cardiovascular tissue engineering makes up a large percentage, with substantial resources going towards the creation of bioresorbable vascular grafts composed of electrospun nanofibers of collagen and other biopolymers. These bioresorbable grafts have compositions that allow for the in situ remodeling of the structure, with the eventual replacement of the graft with completely autologous tissue.
View Article and Find Full Text PDFThe purpose of this study was to quantify the acute expression of tissue factor (TF) by monocytes on interaction with electrospun bioresorbable constructs. A minimal expression of TF will demonstrate the potential for scaffolds to be used as a vascular graft without enhanced risk of failure from acute thrombotic occlusion. Polydioxanone (PDO) (60, 80, 120, and 160 mg/mL) and polycaprolactone (PCL) (80, 10, and 160 mg/mL) dissolved in 1,1,1,3,3,3 hexafluoro-2-propanol (HFP) were electrospun to form fibrous scaffolds.
View Article and Find Full Text PDF