The maize ligule is an epidermis-derived structure that arises from the preligule band (PLB) at a boundary between the blade and sheath. A hinge-like auricle also develops immediately distal to the ligule and contributes to blade angle. Here, we characterize the stages of PLB and early ligule development in terms of topography, cell area, division orientation, cell wall rigidity and auxin response dynamics.
View Article and Find Full Text PDFThe plant hormone abscisic acid (ABA) controls many aspects of plant growth and development, including seed development, germination and responses to water-deficit stress. A complex ABA signaling network integrates environmental signals including water availability and light intensity and quality to fine-tune the response to a changing environment. To further define the regulatory pathways that control water-deficit and ABA responses, we carried out a gene-trap tagging screen for water-deficit-regulated genes in Arabidopsis thaliana.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2012
Spatiotemporal control of the formation of organ primordia and organ boundaries from the stem cell niche in the shoot apical meristem (SAM) determines the patterning and architecture of plants, but the underlying signaling mechanisms remain poorly understood. Here we show that brassinosteroids (BRs) play a key role in organ boundary formation by repressing organ boundary identity genes. BR-hypersensitive mutants display organ-fusion phenotypes, whereas BR-insensitive mutants show enhanced organ boundaries.
View Article and Find Full Text PDFLeaves and flowers begin life as outgrowths from the edges of shoot apical meristems. Stem cell divisions in the meristem center replenish cells that are incorporated into organ primordia at the meristem periphery and leave the meristem. Organ boundaries, regions of limited growth that separate forming organs from the meristem, serve to isolate these two domains and are critical for coordination of organogenesis and meristem maintenance.
View Article and Find Full Text PDFThe Arabidopsis LOB-domain (LBD) gene family is composed by 43 members divided in two classes based on amino acid conservation within the LOB-domain. The LOB domain is known to be responsible for DNA binding and protein-protein interactions. There is very little functional information available for most genes in the LBD family and many lbd single mutants do not exhibit conspicuous phenotypes.
View Article and Find Full Text PDFThe LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene family encodes plant-specific transcription factors. In this report, the LBD gene DOWN IN DARK AND AUXIN1 (DDA1), which is closely related to LATERAL ORGAN BOUNDARIES (LOB) and ASYMMETRIC LEAVES2 (AS2), was characterized. DDA1 is expressed primarily in vascular tissues and its transcript levels were reduced by exposure to exogenous indole-3-acetic acid (IAA or auxin) and in response to dark exposure.
View Article and Find Full Text PDFPlant organs are generated from meristems throughout development. Patterning and elaboration of organ primordia occur as a result of organized cell division and expansion, processes that are likely to be controlled, in part, by meristem-derived signals. Communication between the meristem and lateral organs is crucial for meristem maintenance and organ patterning, and organ boundaries are thought to be important for mediating this communication.
View Article and Find Full Text PDFABSTRACT The experimental infection of Arabidopsis thaliana by the maize phytopathogenic hemibasidiomycete Ustilago maydis under axenic conditions is described. When plantlets were inoculated with mixtures of compatible haploids, the fungus was able to grow on the plant surface of inoculated seedlings in the form of white mycelium and invade the tissues, probably penetrating through stomata; however, it did not form teliospores. Symptoms of disease were increased anthocyanin formation, development of chlorosis, increased formation of secondary roots, induction of malformations in the leaves and petioles, induction of tissue necrosis, and stunting.
View Article and Find Full Text PDFLateral organ polarity in Arabidopsis is regulated by antagonistic interactions between genes that promote either adaxial or abaxial identity, but the molecular basis of this interaction is largely unknown. We show that the adaxial regulator ASYMMETRIC LEAVES2 (AS2) is a direct target of the abaxial regulator KANADI1 (KAN1), and that KAN1 represses the transcription of AS2 in abaxial cells. Mutation of a single nucleotide in a KAN1 binding site in the AS2 promoter causes AS2 to be ectopically expressed in abaxial cells, resulting in a dominant, adaxialized phenotype.
View Article and Find Full Text PDFConserved in a variety of evolutionarily divergent plant species, LOB DOMAIN (LBD) genes define a large, plant-specific family of largely unknown function. LBD genes have been implicated in a variety of developmental processes in plants, although to date, relatively few members have been assigned functions. LBD proteins have previously been predicted to be transcription factors, however supporting evidence has only been circumstantial.
View Article and Find Full Text PDFThe external appearance of flowering plants is determined to a large extent by the forms of flower-bearing branch systems, known as inflorescences, and their position in the overall structure of the plant. Branches and branching patterns are produced by tissues called shoot apical meristems. Thus, inflorescence architecture reflects meristem number, arrangement and activity, and the duration of meristem activity correlates with branch length.
View Article and Find Full Text PDFA maize cDNA clone was isolated by virtue of its intense hybridization to total maize genomic DNA, indicating homology to highly repetitive sequences. Genomic homologues were identified and subcloned from an adh1-bearing maize yeast artificial chromosome (YAC). Sequencing revealed that the expressed sequence was part of a Ty3-gypsy-type retrotransposon.
View Article and Find Full Text PDFThe normal development of lateral organs of the shoot requires the simultaneous repression of meristem-specific genes and the activation of organ-specific genes. ASYMMETRIC LEAVES2 (AS2) is required for the development of normal leaf shape and for the repression of KNOX genes in the leaf. AS2 is a member of the recently identified, plant-specific LATERAL ORGAN BOUNDARIES (LOB)-domain gene family.
View Article and Find Full Text PDFGene traps and enhancer traps provide a valuable tool for gene discovery. With this system, genes can be identified based solely on the expression pattern of an inserted reporter gene. The use of a reporter gene, such as beta-glucuoronidase (GUS), provides a very sensitive assay for the identification of tissue- and cell-type specific expression patterns.
View Article and Find Full Text PDFWe describe a new resource for targeted insertional mutagenesis in Arabidopsis using a maize (Zea mays) Activator/Dissociation (Ds) two-element system. The two components of the system, T-DNA vectors carrying a Ds launch pad and a stable Activator transposase source, were designed to simplify selection of transposition events and maximize their usefulness. Because Ds elements preferentially transpose to nearby genomic sites, they can be used in targeted mutagenesis of linked genes.
View Article and Find Full Text PDFA collection of Arabidopsis enhancer trap transposants has been identified for use as a teaching tool. This collection serves to assist students in understanding the patterning and organization of plant tissues and cells, and will be useful in plant anatomy, morphology, and developmental biology courses. Each transposant exhibits reporter gene expression in a specific tissue, cell type, or domain, and these lines collectively offer a glimpse of compartments of gene expression.
View Article and Find Full Text PDFVascular development is a fundamental component of leaf morphogenesis, and the mechanisms that control vascular patterning are poorly understood. We report here the identification of an enhancer trap line, Vascular Prepattern (VPP), that acts as a marker for early vascular development. GUS reporter gene expression in VPP was detected in provascular cells from the earliest stages of primary midvein formation in leaf primordia and subsequently coincided with the early specification of higher order veins.
View Article and Find Full Text PDFThe LATERAL ORGAN BOUNDARIES (LOB) gene in Arabidopsis defines a new conserved protein domain. LOB is expressed in a band of cells at the adaxial base of all lateral organs formed from the shoot apical meristem and at the base of lateral roots. LOB encodes a predicted protein that does not have recognizable functional motifs, but that contains a conserved domain (the LOB domain) that is present in 42 other Arabidopsis proteins and in proteins from a variety of other plant species.
View Article and Find Full Text PDFTransient soil flooding limits cellular oxygen to roots and reduces crop yield. Plant response to oxygen deprivation involves increased expression of the alcohol dehydrogenase gene (ADH) and ethanolic fermentation. Disruption of the Arabidopsis gene that encodes Rop (RHO-like small G protein of plants) guanosine triphosphatase (GTPase) activating protein 4 (ROPGAP4), a Rop deactivator, elevates ADH expression in response to oxygen deprivation but decreases tolerance to stress.
View Article and Find Full Text PDFThe Arabidopsis thaliana (L.) Heynh. gene PROLIFERA (PRL) is a member of the MCM family of genes that are required for DNA replication during the S phase of the cell cycle.
View Article and Find Full Text PDF