As individuals diagnosed with Parkinson's disease enter older age, the myriad challenges and complications associated with this condition tend to escalate. Hence, there is a critical necessity to comprehensively discern the perceived needs of these individuals, along with their proposed remedies and essential support requisites. Additionally, understanding the perspectives of their families becomes imperative to formulate tailored interventions aimed at enhancing their overall development, progression, and quality of life.
View Article and Find Full Text PDFAn ecofriendly and low-cost film composed by cassava starch, polyvinyl alcohol, and sericin blend (CS-PVA-SS) was synthesized, characterized, and applied as a novel support for Botryosphaeria ribis EC-01 lipase immobilization by enzyme-film-enzyme adsorption. Film revealed thickness between 230 and 309 μm and higher flexibility and malleability in comparison with film without SS. Based on p-nitrophenyl palmitate hydrolysis reaction, the activity retention of immobilized lipase was 987%.
View Article and Find Full Text PDFPrep Biochem Biotechnol
July 2021
The objective of the present work was to develop biodegradable polymeric films (starch-PBAT) as support for the immobilization of lipases using sodium montmorillonite (MMT) as a reinforcing agent (2% ) and itaconic acid (IA - 0.5-1.5% ) as a compatibilizing agent.
View Article and Find Full Text PDFBiodegradable films have been a great alternative compared to non-renewable sources because of their cytocompatibility, biodegradability, and antimicrobial features. These properties may raise the foodstuff shelf life, reducing costs and economic losses. Indeed, biodegradable films can also reduce the environmental pollution promoted by non-biodegradable conventional packs.
View Article and Find Full Text PDFProcessing water-soluble polysaccharides, like pectin (PT), into materials with desirable stability and mechanical properties has been challenging. Here we report a new method to create water stable and mechanical resistant polyelectrolyte complex (PEC) membranes from PT and chitosan (CS) assemblies, without covalent crosslinking. This new method overcomes challenges of obtaining stable and durable complexes, by performing the complexation at low pH, enabling complex formation even when using an excess of PT, and when using PT with high degree of O-methoxylation.
View Article and Find Full Text PDFBiodegradable films were produced using the blown extrusion method from blends that contained cassava thermoplastic starch (TPS), poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA) with two different extrusion processes. The choice of extrusion process did not have a significant effect on the mechanical properties, water vapor permeability (WVP) or viscoelasticity of the films, but the addition of PLA decreased the elongation, blow-up ratio (BUR) and opacity and increased the elastic modulus, tensile strength and viscoelastic parameters of the films. The films with 20% PLA exhibited a lower WVP due to the hydrophobic nature of this polymer.
View Article and Find Full Text PDF