The rat dorsomedial (DMS) and dorsolateral striatum (DLS), equivalent to caudate nucleus and putamen in primates, are required for goal-directed and habit behaviour, respectively. However, it is still unclear whether and how this functional dichotomy emerges in the course of learning. In this study, we investigated this issue by recording DMS and DLS single neuron activity in rats performing a continuous spatial alternation task, from the acquisition to optimized performance.
View Article and Find Full Text PDFAlthough transfer models are limited in their ability to evolve over time and account for a wide range of processes, they have repeatedly shown to be useful for testing categorization theories and predicting participants' generalization performance. In this study, we propose a statistical framework that allows transfer models to be applied to category learning data. Our framework uses a segmentation/clustering technique specifically tailored to suit category learning data.
View Article and Find Full Text PDFWe develop a method for selecting meaningful learning strategies based solely on the behavioral data of a single individual in a learning experiment. We use simple Activity-Credit Assignment algorithms to model the different strategies and couple them with a novel hold-out statistical selection method. Application on rat behavioral data in a continuous T-maze task reveals a particular learning strategy that consists in chunking the paths used by the animal.
View Article and Find Full Text PDFThis study simultaneously manipulates within-category (rule-based vs. similarity-based), between-category (blocked vs. interleaved), and across-blocks (constant vs.
View Article and Find Full Text PDFWe present a new algorithm to efficiently simulate random models of large neural networks satisfying the property of time asynchrony. The model parameters (average firing rate, number of neurons, synaptic connection probability, and postsynaptic duration) are of the order of magnitude of a small mammalian brain or of human brain areas. Through the use of activity tracking and procedural connectivity (dynamical regeneration of synapses), computational and memory complexities of this algorithm are proved to be theoretically linear with the number of neurons.
View Article and Find Full Text PDFBackground: Statistical models that predict neuron spike occurrence from the earlier spiking activity of the whole recorded network are promising tools to reconstruct functional connectivity graphs. Some of the previously used methods are in the general statistical framework of the multivariate Hawkes processes. However, they usually require a huge amount of data, some prior knowledge about the recorded network, and/or may produce an increasing number of spikes along time during simulation.
View Article and Find Full Text PDFWe investigate several distribution-free dependence detection procedures, all based on a shuffling of the trials, from a statistical point of view. The mathematical justification of such procedures lies in the bootstrap principle and its approximation properties. In particular, we show that such a shuffling has mainly to be done on centered quantities-that is, quantities with zero mean under independence-to construct correct p-values, meaning that the corresponding tests control their false positive (FP) rate.
View Article and Find Full Text PDFWhen dealing with classical spike train analysis, the practitioner often performs goodness-of-fit tests to test whether the observed process is a Poisson process, for instance, or if it obeys another type of probabilistic model (Yana et al. in Biophys. J.
View Article and Find Full Text PDFThe unitary events (UE) method is one of the most popular and efficient methods used over the past decade to detect patterns of coincident joint spike activity among simultaneously recorded neurons. The detection of coincidences is usually based on binned coincidence count (Grün, 1996 ), which is known to be subject to loss in synchrony detection (Grün, Diesmann, Grammont, Riehle, & Aertsen, 1999 ). This defect has been corrected by the multiple shift coincidence count (Grün et al.
View Article and Find Full Text PDF