Publications by authors named "Patricia Perez Esteban"

This work proposes the development of a thermosensitive local drug release system based on Polaxamer 407, also known as Pluronic® F-127 (PF-127), Gellan Gum (GG) and the inclusion complex Sulfobutylated-β-cyclodextrin (CD) with Farnesol (FOH). Rheological properties of the hydrogels and their degradation were studied. According to the rheological results, a solution of 20% w/v of PF-127 forms a strong gel with a gelling temperature of about 25 °C (storage modulus of 15,000 Pa).

View Article and Find Full Text PDF

Hydrogels loaded with chemotherapeutics are promising tools for local tumor treatment. In this work, redox-responsive implantable hydrogels based on gellan gum were prepared as paclitaxel carriers for HER2-positive breast cancer therapy. To achieve different degrees of chemical crosslinking, hydrogels were synthesized in both acetate buffer and phosphate buffer and crosslinked with different concentrations of l-cysteine.

View Article and Find Full Text PDF

With the increasing prevalence of neurodegenerative diseases, improved models of the central nervous system (CNS) will improve our understanding of neurophysiology and pathogenesis, whilst enabling exploration of novel therapeutics. Studies of brain physiology have largely been carried out using in vivo models, ex vivo brain slices or primary cell culture from rodents. Whilst these models have provided great insight into complex interactions between brain cell types, key differences remain between human and rodent brains, such as degree of cortical complexity.

View Article and Find Full Text PDF

Olfactory ensheathing cells (OECs) are a promising potential cell therapy to aid regeneration. However, there are significant challenges in isolating and characterizing them. In the current study, we have explored methods to enhance the recovery of cells expressing OEC marker p75NTR from rat mucosa.

View Article and Find Full Text PDF

The crystalline biofilms of Proteus mirabilis can seriously complicate the care of patients undergoing long-term indwelling urinary catheterisation. Expression of bacterial urease causes a significant increase in urinary pH, leading to the supersaturation and precipitation of struvite and apatite crystals. These crystals become lodged within the biofilm, resulting in the blockage of urine flow through the catheter.

View Article and Find Full Text PDF

In earlier work we have demonstrated the effect that nano-emulsions have on bacterial growth, and most importantly the enhanced bacteriophage infectivity against Staphylococcus aureus in planktonic culture when phage are carried in nano-emulsions. However, the mechanisms of enhancement of the bacteriophage killing effect are not specifically understood. This work focuses on the investigation of the possible interactions between emulsion droplets and bacterial cells, between emulsion droplets and bacteriophages, and finally interactions between all three components: nano-emulsion droplets, bacteria, and bacteriophages.

View Article and Find Full Text PDF

Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion.

View Article and Find Full Text PDF