Publications by authors named "Patricia Occhipinti"

The evolution of pathogens in response to selective pressures present during chronic infections can influence their persistence and virulence and the outcomes of antimicrobial therapy. Because subpopulations within an infection can be spatially separated and the host environment can fluctuate, an appreciation of the pathways under selection may be most easily revealed through the analysis of numerous isolates from single infections. Here, we continued our analysis of a set of clonally derived () isolates from a single chronic lung infection with a striking enrichment in the number of alleles of Genetic and genomic analyses found evidence for repeated acquisition of gain-of-function mutations that conferred constitutive Mrr1 activity.

View Article and Find Full Text PDF

frequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed an advanced fluorescence polarization microscope that allows them to image the position and orientation of fluorescent molecules in living cells with high sensitivity and quick time resolution.
  • They created methods to capture and analyze single particles interacting with molecular assemblies, tracking fluctuations in both position and orientation from a broad ensemble down to individual molecules.
  • Tests of the system showed that it could effectively examine known structures like DNA and F-actin, revealing important insights into how these molecular arrangements behave and contribute to cellular functions in real-time.
View Article and Find Full Text PDF

Nuclei in syncytia found in fungi, muscles, and tumors can behave independently despite cytoplasmic translation and the homogenizing potential of diffusion. We use a dynactin mutant strain of the multinucleate fungus Ashbya gossypii with highly clustered nuclei to assess the relative contributions of nucleus and cytoplasm to nuclear autonomy. Remarkably, clustered nuclei maintain cell cycle and transcriptional autonomy; therefore some sources of nuclear independence function even with minimal cytosol insulating nuclei.

View Article and Find Full Text PDF

Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions.

View Article and Find Full Text PDF

Compartmentalization in cells is central to the spatial and temporal control of biochemistry. In addition to membrane-bound organelles, membrane-less compartments form partitions in cells. Increasing evidence suggests that these compartments assemble through liquid-liquid phase separation.

View Article and Find Full Text PDF

We resolved the organization of subunits in cytoskeletal polymers in cells by light microscopy. Septin GTPases form linear complexes of about 32 nm length that polymerize into filaments. We visualized both termini of septin complexes by single molecule microscopy in vitro.

View Article and Find Full Text PDF

Dendritic growth in fungi and neurons requires that multiple axes of polarity are established and maintained within the same cytoplasm. We have discovered that transcripts encoding key polarity factors including a formin, Bni1, and a polarisome scaffold, Spa2, are nonrandomly clustered in the cytosol to initiate and maintain sites of polarized growth in the fungus Ashbya gossypii. This asymmetric distribution requires the mRNAs to interact with a polyQ-containing protein, Whi3, and a Pumilio protein with a low-complexity sequence, Puf2.

View Article and Find Full Text PDF

Septins assemble into filaments and higher-order structures that act as scaffolds for diverse cell functions including cytokinesis, cell polarity, and membrane remodeling. Despite their conserved role in cell organization, little is known about how septin filaments elongate and are knitted together into higher-order assemblies. Using fluorescence correlation spectroscopy, we determined that cytosolic septins are in small complexes, suggesting that septin filaments are not formed in the cytosol.

View Article and Find Full Text PDF

Little is known about the active positioning of transcripts outside of embryogenesis or highly polarized cells. We show here that a specific G1 cyclin transcript is highly clustered in the cytoplasm of large multinucleate cells. This heterogeneous cyclin transcript localization results from aggregation of an RNA-binding protein, and deletion of a polyglutamine stretch in this protein results in random transcript localization.

View Article and Find Full Text PDF

Septins are a class of GTP-binding proteins conserved throughout many eukaryotes. Individual septin subunits associate with one another and assemble into heteromeric complexes that form filaments and higher-order structures in vivo. The mechanisms underlying the assembly and maintenance of higher-order structures in cells remain poorly understood.

View Article and Find Full Text PDF

In the multinucleate filamentous fungus Ashbya gossypii, nuclei divide asynchronously in a common cytoplasm. We hypothesize that the division cycle machinery has a limited zone of influence in the cytoplasm to promote nuclear autonomy. Mitochondria in cultured mammalian cells undergo cell cycle-specific changes in morphology and membrane potential and therefore can serve as a reporter of the cell cycle state of the cytoplasm.

View Article and Find Full Text PDF

The septins are conserved, GTP-binding proteins important for cytokinesis, membrane compartmentalization, and exocytosis. However, it is unknown how septins are arranged within higher-order structures in cells. To determine the organization of septins in live cells, we developed a polarized fluorescence microscopy system to monitor the orientation of GFP dipole moments with high spatial and temporal resolution.

View Article and Find Full Text PDF

Synthesis and accumulation of conserved cell cycle regulators such as cyclins are thought to promote G₁/S and G₂/M transitions in most eukaryotes. When cells at different stages of the cell cycle are fused to form heterokaryons, the shared complement of regulators in the cytoplasm induces the nuclei to become synchronized. However, multinucleate fungi often display asynchronous nuclear division cycles, even though the nuclei inhabit a shared cytoplasm.

View Article and Find Full Text PDF

The septins are filament-forming, GTP-binding proteins that are conserved from yeast to humans. Septins assemble into higher-order structures such as rings, bars, and gauzes with diverse functions including serving as membrane diffusion barriers and scaffolds for cell signaling. The basis for septin filament polymerization and the rules governing septin polymer dynamics are presently not well understood.

View Article and Find Full Text PDF

Septins are conserved, GTP-binding proteins that assemble into higher order structures, including filaments and rings with varied cellular functions. Using four-dimensional quantitative fluorescence microscopy of Ashbya gossypii fungal cells, we show that septins can assemble into morphologically distinct classes of rings that vary in dimensions, intensities, and positions within a single cell. Notably, these different classes coexist and persist for extended times, similar in appearance and behavior to septins in mammalian neurons and cultured cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: