Front Plant Sci
August 2024
Introduction: Reduced water content in the soil triggers physiological, biochemical, and morphological damage to plants, aggravated by nutritional deficiency. One possible strategy to mitigate this damage comprises the use of silicon (Si). This study investigated whether Si can mitigate the damage caused by water deficit through nutritional mechanisms in bean plants grown under field conditions.
View Article and Find Full Text PDFSci Rep
January 2024
Frequent droughts have led to an expansion of irrigated common bean (Phaseolus vulgaris L.) cultivation areas. An effective strategy to enhance water use efficiency and optimize crop growth is the application of silicon (Si) and potassium (K).
View Article and Find Full Text PDFIntensive fertilization of vegetables can promote phosphorus (P) toxicity. However, it can be reversed using silicon (Si), although there is a lack of research clarifying its mechanisms of action. This research aims to study the damage caused by P toxicity to scarlet eggplant plants and whether Si can mitigate this toxicity.
View Article and Find Full Text PDFThis research aimed to study the effects of the nanosilica supply on Si absorption and the physiological and nutritional aspects of beet plants with N and P deficiencies cultivated in a nutrient solution. Two experiments were performed with treatments arranged in a 2 × 2 factorial scheme in randomized blocks with five replications. The first experiment was carried out on plants under a N deficiency and complete (complete solution with all nutrients), combined with the absence of Si (0 mmol L) and the presence of Si (2.
View Article and Find Full Text PDF