Publications by authors named "Patricia McLenachan"

Bacteria are well known producers of bioactive secondary metabolites, including some of the most effective antibiotics in use today. While the caves of Oceania are still largely under-explored, they form oligotrophic and extreme environments that are a promising source for identifying novel species of bacteria with biologically active compounds. By using selective media that mimicked a cave environment, and pretreatments that suppressed the growth of fast-growing bacteria, we have cultured genetically diverse bacteria from a limestone cave in Fiji.

View Article and Find Full Text PDF

Members of the Peronosporaceae (Oomycota, Chromista), which currently consists of 25 genera and approximately 1,000 recognized species, are responsible for disease on a wide range of plant hosts. Molecular phylogenetic analyses over the last two decades have improved our understanding of evolutionary relationships within Peronosporaceae. To date, 16 numbered and three named clades have been recognized; it is clear from these studies that the current taxonomy does not reflect evolutionary relationships.

View Article and Find Full Text PDF

Phytophthora agathidicida is associated with a root rot that threatens the long-term survival of the iconic New Zealand kauri. Although it is widely assumed that this pathogen arrived in New Zealand post-1945, this hypothesis has yet to be formally tested. Here we describe evolutionary analyses aimed at evaluating this and two alternative hypotheses.

View Article and Find Full Text PDF

The root rot causing oomycete, Phytophthora agathidicida, threatens the long-term survival of the iconic New Zealand kauri. Currently, testing for this pathogen involves an extended soil bioassay that takes 14-20 days and requires specialised staff, consumables, and infrastructure. Here we describe a loop-mediated isothermal amplification (LAMP) assay for the detection of P.

View Article and Find Full Text PDF

Premise: Spore-bearing plants are capable of dispersing very long distances. However, it is not known if gene flow can prevent genetic divergence in widely distributed taxa. Here we address this issue, and examine systematic relationships at a global geographic scale for the fern genus Pteridium.

View Article and Find Full Text PDF

Metagenomics can be used to identify potential biocontrol agents for invasive species and was used here to identify candidate species for biocontrol of an invasive club moss in New Zealand. Profiles were obtained for collected from nine geographically disjunct locations in Northern New Zealand. These profiles were distinct from those obtained for the exotic club moss and the native club mosses and also collected in Northern New Zealand.

View Article and Find Full Text PDF

Over the last decades, several studies have reported emissions of nitrous oxide (N O) from microalgal cultures and aquatic ecosystems characterized by a high level of algal activity (e.g. eutrophic lakes).

View Article and Find Full Text PDF

The New Zealand acanthisittid wrens are the sister-taxon to all other "perching birds" (Passeriformes) and - including recently extinct species - represent the most diverse endemic passerine family in New Zealand. Consequently, they are important for understanding both the early evolution of Passeriformes and the New Zealand biota. However, five of the seven species have become extinct since the arrival of humans in New Zealand, complicating evolutionary analyses.

View Article and Find Full Text PDF

We use chloroplast DNA sequencing to examine aspects of the pre-European Māori cultivation of an endemic New Zealand root crop, Arthropodium cirratum (rengarenga). Researching the early stages of domestication is not possible for the majority of crops, because their cultivation began many thousands of years ago and/or they have been substantially altered by modern breeding methods. We found high levels of genetic variation and structuring characterised the natural distribution of A.

View Article and Find Full Text PDF

Passerines are the largest avian order, and the 6,000 species comprise more than half of all extant bird species. This successful radiation probably had its origin in the Australasian region, but dating this origin has been difficult due to a scarce fossil record and poor biogeographic assumptions. Many of New Zealand's endemic passerines fall within the deeper branches of the passerine radiation, and a well resolved phylogeny for the modern New Zealand element in the deeper branches of the oscine lineage will help us understand both oscine and passerine biogeography.

View Article and Find Full Text PDF

We report the chloroplast genomes of a tree fern (Dicksonia squarrosa) and a "fern ally" (Tmesipteris elongata), and show that the phylogeny of early land plants is basically as expected, and the estimates of divergence time are largely unaffected after removing the fastest evolving sites. The tree fern shows the major reduction in the rate of evolution, and there has been a major slowdown in the rate of mutation in both families of tree ferns. We suggest that this is related to a generation time effect; if there is a long time period between generations, then this is probably incompatible with a high mutation rate because otherwise nearly every propagule would probably have several lethal mutations.

View Article and Find Full Text PDF

We report three new avian mitochondrial genomes, two from widely separated groups of owls and a falcon relative (the Secretarybird). We then report additional progress in resolving Neoavian relationships in that the two groups of owls do come together (it is not just long-branch attraction), and the Secretarybird is the deepest divergence on the Accipitridae lineage. This is now agreed between mitochondrial and nuclear sequences.

View Article and Find Full Text PDF

The phylogenetic branching order of the green algal groups that gave rise to land plants remains uncertain despite its fundamental importance to understanding plant evolution. Previous studies have demonstrated that land plants evolved from streptophyte algae, but different lineages of streptophytes have been suggested to be the sister group of land plants. To better understand the evolutionary history of land plants and to determine the potential effects of "long-branch attraction" in phylogenetic reconstruction, we analyzed a chloroplast genome data set including three new chloroplast genomes from streptophyte algae: Coleochaetae orbicularis (Coleochaetales), Nitella hookeri (Charales), and Spirogyra communis (Zygnematales).

View Article and Find Full Text PDF

Here we investigate the diversity of pathogenic Vibrio species in marine environments close to Suva, Fiji. We use four distinct yet complementary analyses - biochemical testing, phylogenetic analyses, metagenomic analyses and molecular typing - to provide some preliminary insights into the diversity of vibrios in this region. Taken together our analyses confirmed the presence of nine Vibrio species, including three of the most important disease-causing vibrios (i.

View Article and Find Full Text PDF

Recently, we reported the chloroplast genome-wide association of oligonucleotide repeats, indels and nucleotide substitutions in aroid chloroplast genomes. We hypothesized that the distribution of oligonucleotide repeat sequences in a single representative genome can be used to identify mutational hotspots and loci suitable for population genetic, phylogenetic and phylogeographic studies. Using information on the location of oligonucleotide repeats in the chloroplast genome of taro (Colocasia esculenta), we designed 30 primer pairs to amplify and sequence polymorphic loci.

View Article and Find Full Text PDF

There is much interest in using high-throughput DNA sequencing methodology to monitor microorganisms, complex plant and animal communities. However, there are experimental and analytical issues to consider before applying a sequencing technology, which was originally developed for genome projects, to ecological projects. Many of these issues have been highlighted by recent microbial studies.

View Article and Find Full Text PDF

Many details surrounding the origins of the peoples of Oceania remain to be resolved, and as a step towards this we report seven new complete mitochondrial genomes from the Q2a haplogroup, from Papua New Guinea, Fiji and Kiribati. This brings the total to eleven Q2 genomes now available. The Q haplogroup (that includes Q2) is an old and diverse lineage in Near Oceania, and is reasonably common; within our sample set of 430, 97 are of the Q haplogroup.

View Article and Find Full Text PDF

Correct rooting of the angiosperm radiation is both challenging and necessary for understanding the origins and evolution of physiological and phenotypic traits in flowering plants. The problem is known to be difficult due to the large genetic distance separating flowering plants from other seed plants and the sparse taxon sampling among basal angiosperms. Here, we provide further evidence for concern over substitution model misspecification in analyses of chloroplast DNA sequences.

View Article and Find Full Text PDF

Background: The genus Rattus is highly speciose and has a complex taxonomy that is not fully resolved. As shown previously there are two major groups within the genus, an Asian and an Australo-Papuan group. This study focuses on the Australo-Papuan group and particularly on the Australian rats.

View Article and Find Full Text PDF

Until now, phylogenetic studies of the mongooses (Carnivora, Herpestidae) have not included an exhaustive sampling of the Asian members of this family. In this study, we used mitochondrial (Cytochrome b and ND2), nuclear (beta-fibrinogen intron 7 and Transthyretin intron 1) sequences from almost all of the recognized mongoose species to produce a well-resolved phylogeny of the Herpestidae. We also performed molecular dating analyses to infer divergence dates of the different lineages within the Herpestidae.

View Article and Find Full Text PDF

The extent and evolutionary significance of hybridization is difficult to evaluate because of the difficulty in distinguishing hybridization from incomplete lineage sorting. Here we present a novel parametric approach for statistically distinguishing hybridization from incomplete lineage sorting based on minimum genetic distances of a nonrecombining locus. It is based on the idea that the expected minimum genetic distance between sequences from two species is smaller for some hybridization events than for incomplete lineage sorting scenarios.

View Article and Find Full Text PDF

The timing and order of divergences within the genus Rattus have, to date, been quite speculative. In order to address these important issues we sequenced six new whole mitochondrial genomes from wild-caught specimens from four species, Rattus exulans, Rattus praetor, Rattus rattus and Rattus tanezumi. The only rat whole mitochondrial genomes available previously were all from Rattus norvegicus specimens.

View Article and Find Full Text PDF

Background: Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved.

View Article and Find Full Text PDF

Incomplete taxon sampling has been a major problem in resolving the early divergences in birds. Five new mitochondrial genomes are reported here (brush-turkey, lyrebird, suboscine flycatcher, turkey vulture, and a gull) and three break up long branches that tended to attract the distant reptilian outgroup. These long branches were to galliforms, and to oscine and suboscine passeriformes.

View Article and Find Full Text PDF