Coronary microvascular disease (CMD) and impaired coronary blood flow control are defects that occur early in the pathogenesis of heart failure in cardiometabolic conditions, prior to the onset of atherosclerosis. In fact, recent studies have shown that CMD is an independent predictor of cardiac morbidity and mortality in patients with obesity and metabolic disease. CMD is comprised of functional, structural, and mechanical impairments that synergize and ultimately reduce coronary blood flow in metabolic disease and in other co-morbid conditions, including transplant, autoimmune disorders, chemotherapy-induced cardiotoxicity, and remote injury-induced CMD.
View Article and Find Full Text PDFVascular stiffness is a predictor of cardiovascular disease and pulse wave velocity (PWV) is the current standard for measuring vascular stiffness. Mean arterial pressure is the largest confounding variable to PWV; therefore, in this study we aimed to test the hypothesis that increased aortic PWV in type 2 diabetic mice is driven by increased blood pressure rather than vascular biomechanics. Using a combination of PWV and pressure myography, our data demonstrate no difference in passive mechanics, including outer diameter, inner diameter, compliance (Db/db: 0.
View Article and Find Full Text PDFEarly stopping is an extremely common tool to minimize overfitting, which would otherwise be a cause of poor generalization of the model to novel data. However, early stopping is a heuristic that, while effective, primarily relies on ad hoc parameters and metrics. Optimizing when to stop remains a challenge.
View Article and Find Full Text PDFThe lack of pre-clinical large animal models of heart failure with preserved ejection fraction (HFpEF) remains a growing, yet unmet obstacle to improving understanding of this complex condition. We examined whether chronic cardiometabolic stress in Ossabaw swine, which possess a genetic propensity for obesity and cardiovascular complications, produces an HFpEF-like phenotype. Swine were fed standard chow (lean; n = 13) or an excess calorie, high-fat, high-fructose diet (obese; n = 16) for ~ 18 weeks with lean (n = 5) and obese (n = 8) swine subjected to right ventricular pacing (180 beats/min for ~ 4 weeks) to induce heart failure (HF).
View Article and Find Full Text PDFBackground: Notch signaling is an evolutionarily conserved pathway that functions via direct cell-cell contact. The Notch ligand Jagged1 (Jag1) has been extensively studied in vascular development, particularly for its role in smooth muscle cell maturation. Endothelial cell-expressed Jag1 is essential for blood vessel formation by signaling to nascent vascular smooth muscle cells and promoting their differentiation.
View Article and Find Full Text PDFCoronary artery disease is the leading cause of heart disease, and while it can be assessed through transthoracic Doppler echocardiography (TTDE) by observing changes in coronary flow, manual analysis of TTDE is time consuming and subject to bias. In a previous study, a program was created to automatically analyze coronary flow patterns by parsing Doppler videos into a single continuous image, binarizing and separating the image into cardiac cycles, and extracting data values from each of these cycles. The program significantly reduced variability and time to complete TTDE analysis, but some obstacles such as interfering noise and varying video sizes left room to increase the program's accuracy.
View Article and Find Full Text PDFImpaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity, yet underlying mechanisms and potential therapeutic strategies remain poorly understood.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2021
Under normal conditions, coronary blood flow (CBF) provides critical blood supply to the myocardium so that it can appropriately meet the metabolic demands of the body. Dogmatically, there exist several known regulators and modulators of CBF that include local metabolites and neurohormonal factors that can influence the function of the coronary circulation. In disease states such as diabetes and myocardial ischemia, these regulators are impaired or shifted such that CBF is reduced.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2020
Type 2 diabetic (T2DM) coronary resistance microvessels (CRMs) undergo inward hypertrophic remodeling associated with reduced stiffness and reduced coronary blood flow in both mice and pig models. Since reduced stiffness does not appear to be due to functional changes in the extracellular matrix, this study tested the hypothesis that decreased CRM stiffness in T2DM is due to reduced vascular smooth muscle cell (VSMC) stiffness, which impacts the traction force generated by VSMCs. Atomic force microscopy (AFM) and traction force microscopy (TFM) were conducted on primary low-passage CRM VSMCs from normal / and T2DM / mice in addition to low-passage normal and T2DM deidentified human coronary VSMCs.
View Article and Find Full Text PDFRationale: Myoendothelial junctions (MEJs) within the fenestrae of the internal elastic lamina (IEL) are critical sites that allow for endothelial cell (EC) - vascular smooth muscle cell (VSMC) contact and communication. Vascular Notch signaling is a critical determinant of normal vasculogenesis and remodeling, and it regulates cell phenotype via contact between ECs and VSMCs. To date, no studies have linked Notch signaling to the MEJ despite it requiring cell-cell contact.
View Article and Find Full Text PDFThe coronary microcirculation (CM) plays a critical role in the regulation of blood flow and nutrient exchange to support the viability of the heart. In many disease states, the CM becomes structurally and functionally impaired, and transthoracic Doppler echocardiography can be used as a non-invasive surrogate to assess CM disease. Analysis of Doppler echocardiography is prone to user bias and can be laborious, especially if additional parameters are collected.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is suggested to cause an "early vascular aging" phenomenon that is associated with vascular dysfunction, remodeling, and adverse alterations in vascular stiffness. Given that both T2DM and aging are prominent risk factors for cardiovascular disease, the aim of this study was to test the hypothesis that coronary resistance microvessel (CRM) remodeling and impairments in flow occur in the compound setting of T2DM and aging. Normal heterozygous Db/db controls and homozygous db/db mice were aged to 16 (young) or 36 (aged) weeks for all experiments and passive pressure myography and echocardiography were used to assess vascular mechanics, and structure.
View Article and Find Full Text PDFCytoglobin is a widely expressed heme protein that binds oxygen, carbon monoxide and nitric oxide. Recent examination of cytoglobin in the vasculature indicates that it contributes to nitric oxide availability, which is central to normal blood vessel function through regulation of smooth muscle cell tone and physiological response. Given the potential implications of cytoglobin in vascular function, we examined how cytoglobin might be uniquely regulated in vascular smooth muscle cells.
View Article and Find Full Text PDFDiabetes is a risk factor for worse outcomes following acute myocardial infarction (AMI). In this study, we tested the hypothesis that SDF-1:CXCR4 expression is compromised in post-AMI in diabetes, and that reversal of this defect can reverse the adverse effects of diabetes. Mesenchymal stem cells (MSC) isolated from green fluorescent protein (GFP) transgenic mice (control MSC) were induced to overexpress stromal cell-derived factor-1 (SDF-1).
View Article and Find Full Text PDFWhile the isolation and culture of vascular smooth muscle cells (VSMCs) from large vessels is well established, we sought to isolate and culture VSMCs from the coronary circulation. Hearts with intact aortic arches were removed and perfused via retrograde Langendorff with digestion solution containing 300 Units/ml of collagenase type II, 0.1 mg/ml soybean trypsin inhibitor and 1 M CaCl2.
View Article and Find Full Text PDF