Publications by authors named "Patricia Mazon"

Micro-/nano-structured scaffolds with a weight composition of 46.6% α-tricalcium phosphate (α-TCP)-53.4% silicocarnotite (SC) were synthesized by the polymer replica method.

View Article and Find Full Text PDF

Objectives: The propose was to compare this new implant macrogeometry with a control implant with a conventional macrogeometry.

Materials And Methods: Eighty-six conical implants were divided in two groups (n = 43 per group): group control (group CON) that were used conical implants with a conventional macrogeometry and, group test (group TEST) that were used implants with the new macrogeometry. The new implant macrogeometry show several circular healing cambers between the threads, distributed in the implant body.

View Article and Find Full Text PDF

Silicophosphate calcium ceramics are widely used in orthopedic and oral surgery applications because of their properties for stimulating bone formation and bone bonding. These bioceramics, together with multipotent undifferentiated adult human mesenchymal stem cells, are serious candidates in the field of bone tissue engineering and regenerative medicine. For this reason, the influence of a novel 30 wt%CaSiO - 70 wt%Ca(PO) ceramic over a primary adult human mesenchymal stem cells culture has been investigated in this study, observing a total colonization of the biomaterial by cells at 21 days.

View Article and Find Full Text PDF

The purpose of the present study was to measure and compare the insertion torque, removal torque, and the implant stability quotient by resonance frequency analysis in different polyurethane block densities of two implant macrogeometries. Four different polyurethane synthetic bone blocks were used with three cortical thickness: Bone 1 with a cortical thickness of 1 mm, Bone 2 with a cortical thickness of 2 mm, Bone 3 with a cortical thickness of 3 mm, and Bone 4, which was totally cortical. Four groups were created in accordance with the implant macrogeometry (n = 10 per group) and surface treatment: G1-regular implant design without surface treatment; G2-regular implant design with surface treatment; G3-new implant design without surface treatment; G4-new implant design with surface treatment.

View Article and Find Full Text PDF

Threads of dental implants with healing chamber configurations have become a target to improve osseointegration. This biomechanical and histometric study aimed to evaluate the influence of implant healing chamber configurations on the torque removal value (RTv), percentage of bone-to-implant contact (BIC%), bone fraction occupancy inside the thread area (BAFO%), and bone and osteocyte density (Ost) in the rabbit tibia after two months of healing. Titanium implants with three different thread configurations were evaluated: Group 1 (G1), with a conventional "v" thread-shaped implant design; Group 2 (G2), with square threads; and Group 3 (G3), the experimental group with longer threads (healing chamber).

View Article and Find Full Text PDF

The physical characteristics of an implant surface can determine and/or facilitate osseointegration processes. In this sense, a new implant surface with microgrooves associated with plus double acid treatment to generate roughness was evaluated and compared in vitro and in vivo with a non-treated (smooth) and double acid surface treatment. Thirty disks and thirty-six conical implants manufactured from commercially pure titanium (grade IV) were prepared for this study.

View Article and Find Full Text PDF

The aim of this study was to perform an in vivo histological comparative evaluation of bone formation around titanium (machined and treated surface) and zirconia implants. For the present study were used 50 commercially pure titanium implants grade IV, being that 25 implants with a machined surface (TiM group), 25 implants with a treated surface (TiT group) and, 25 implants were manufactured in pure zirconia (Zr group). The implants ( = 20 per group) were installed in the tibia of 10 rabbits.

View Article and Find Full Text PDF

In this work, the physicochemical properties and in vitro bioactivity and cellular viability of two commercially available bovine bone blocks (allografts materials) with different fabrication processes (sintered and not) used for bone reconstruction were evaluated in order to study the effect of the microstructure in the in vitro behavior. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, mechanical resistance of blocks, mercury porosimetry analysis, in vitro bioactivity, and cell viability and proliferation were performed to compare the characteristics of both allograft materials against a synthetic calcium phosphate block used as a negative control. The herein presented results revealed a very dense structure of the low-porosity bovine bone blocks, which conferred the materials' high resistance.

View Article and Find Full Text PDF

This aim of this research was to develop a novel ceramic scaffold to evaluate the response of bone after ceramic implantation in New Zealand (NZ) rabbits. Ceramics were prepared by the polymer replication method and inserted into NZ rabbits. Macroporous scaffolds with interconnected round-shaped pores (0.

View Article and Find Full Text PDF

The aim of the present study was to monitor implant stability after sinus floor elevation with two biomaterials during the first six months of healing by resonance frequency analysis (RFA), and how physico-chemical properties affect the implant stability quotient (ISQ) at the placement and healing sites. Bilateral maxillary sinus augmentation was performed in 10 patients in a split-mouth design using a bobine HA (BBM) as a control and porcine HA (PBM). Six months after sinus lifting, 60 implants were placed in the posterior maxilla.

View Article and Find Full Text PDF

Detailed information about graft material characteristic is crucial to evaluate their clinical outcomes. The present study evaluates the physico-chemical characteristics of two xenografts manufactured on an industrial scale deproteinized at different temperatures (non-sintered and sintered) in accordance with a protocol previously used in sinus lift procedures. It compares how the physico-chemical properties influence the material's performance in vivo by a histomorphometric study in retrieved bone biopsies following maxillary sinus augmentation in 10 clinical cases.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the bioactivity and cell response of a well-characterized Nurse's A-phase (7CaO·P₂O₅·2SiO₂) ceramic and its effect compared to a control (tissue culture polystyrene-TCPS) on the adhesion, viability, proliferation, and osteogenic differentiation of MSCs in vitro. Cell proliferation (Alamar Blue Assay), Alizarin Red-S (AR-s) staining, alkaline phosphatase (ALP) activity, osteocalcin (OCN), and collagen I (Col I) were evaluated. Also, field emission scanning electron microscopy (FESEM) images were acquired in order to visualise the cells and the topography of the material.

View Article and Find Full Text PDF

Objective: The aim of this study was the synthesis and analysis of the tissue reaction to three different Hydroxyapatite (HA)-based bone substitute materials differing only in granule size, porosity, and crystallinity through an animal experimental model at 60 days.

Materials And Methods: Three different HA-based biomaterials were synthesized and characterized by X-ray diffraction, SEM, and EDS analysis, the resultant product was ground in three particle sizes: Group I (2000-4000 μm), Group II (1000-2000 μm), and Group III (600-1000 μm). Critical size defects were created in both tibias of 15 rabbits.

View Article and Find Full Text PDF

Objective: The aim of this study was to compare the influence of the physical-chemical properties of synthetic hydroxyapatite (HA) and biphasic commercial materials on the biological behavior of study materials through material characterization and SEM analysis before and after application in rabbit tibias.

Materials And Methods: Two defects were performed in each tibiae for a total of 180 defects: Group I HA granules (2000-4000 μm), Group II HA granules (1000-2000 μm), Group III HA granules (600-1000 μm), Group IV Ossceram nano (Bredent medical GmbH & Co. KG, Senden, Germany), Group V 4Bone granules (MIS Implants Technologies Ltd, Shlomi, Israel), and Group VI: empty defect acted as control.

View Article and Find Full Text PDF

The subsystem Nurse's A-phase-silicocarnotite within the system Ca₃(PO₄)₂-Ca₂SiO₄ was conducted as a preliminary step toward obtaining new biomaterials with controlled microstructures. Phase composition of the resulting ceramics was studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy with attached wavelength dispersive spectroscopy. The results showed that the sub-system presents an invariant eutectoid point at 1366 ± 4 °C with a composition of 59.

View Article and Find Full Text PDF

Retraction: Maté Sánchez de Val JE , Calvo Guirado JL , Ramírez Fernández MP , Delgado Ruiz RA , Mazón P, De Aza PN . In vivo behavior of hydroxyapatite/β‐TCP /collagen scaffold in animal model. Histological, histomorphometrical, radiological, and SEM analysis at 15, 30, and 60 days.

View Article and Find Full Text PDF

Calcium-phosphate ceramics, which have a composition similar to bone mineral, represent a potentially interesting synthetic bone graft substitute. In the present study, three porous hydroxyapatite (HA)/β-tricalcium phosphate (β-TCP)/collagen ceramic scaffolds were developed, characterized, and tested for their bone repairing capacity and osteoinductive potential in a New Zealand Rabbit model. The ratio of the ceramic components HA/-TCP/collagen varied from 40/30/30 to 50/20/30 and 60/20/20 (in wt %), respectively.

View Article and Find Full Text PDF

This work describes the evaluation of three ceramic materials as potential osteogenic substrate for bone tissue engineering. The capacity of adult human mesenchymal stem cells cultured under experimental conditions known to adhere, proliferate and differentiate into osteoblasts was studied. Two types of culture medium: growth medium and osteogenic medium were evaluated.

View Article and Find Full Text PDF

Alkaloids such as cinchonidine, quinine and N-methylephedrine have been N-alkylated using polymeric benzyl halides or co-polymerized and then N-alkylated, thus affording a series of polymer-supported chiral ammonium salts which have been employed as phase-transfer catalysts in the asymmetric benzylation of an N-(diphenylmethylene)glycine ester. These new polymeric catalysts can be easily recovered by simple filtration after the reaction and reused. The best ee's were achieved when Merrifield resin-anchored cinchonidinium ammonium salts were employed.

View Article and Find Full Text PDF