Publications by authors named "Patricia Marion"

Chronic infection with the hepatitis B virus (HBV) occurs in approximately 6% of the world's population and carriers of the virus are at risk for complicating hepatocellular carcinoma. Current treatment options have limited efficacy and chronic HBV infection is likely to remain a significant global medical problem for many years to come. Silencing HBV gene expression by harnessing RNA interference (RNAi) presents an attractive option for development of novel and effective anti HBV agents.

View Article and Find Full Text PDF

We report the syntheses of novel cationic lipids comprised of cholesteryl-moieties linked to guanidinium functional groups, and also cationic lipids comprising a dialkylglycylamide moiety conjugated with a polyamine or a guanidinium functional group. In plasmid DNA (pDNA) transfection studies, these cationic lipids were formulated into cationic liposomes with the neutral co-lipid dioleoyl-L-alpha-phosphatidylethanolamine (DOPE) or with a recently reported neutral lipophosphoramidate derivative of histamine (MM27). We observe that cationic liposomes prepared from the cationic lipid N',N'-dioctadecyl-N-4,8-diaza-10-aminodecanoylglycine amide (DODAG) and DOPE frequently mediate the highest levels of transfection in vitro in all three different cell lines studied (OVCAR-3, IGROV-1 and HeLa) both in the presence or absence of serum.

View Article and Find Full Text PDF

Achieving safe delivery of anti-hepatitis B virus (HBV) RNA interference (RNAi) effectors is an important objective of this gene-silencing technology. Adenoviruses (Ads) have a natural tropism for the liver after systemic administration, and are useful for delivery of expressed anti-HBV RNAi sequences. However, a drawback of Ad vectors is diminished efficacy and toxicity that results from stimulation of innate and adaptive immunity.

View Article and Find Full Text PDF

The authors investigated the spectrum of tumors and Trp53 mutations in genetically engineered models using the FVB/N mouse that expressed the hepatitis B virus genome and/or carried a Trp53 null and wildtype allele and/or were exposed to aflatoxin B1. Liver tumor incidence was increased when all three risk factors were present. Without aflatoxin B1 exposure, neither Trp53 haploinsufficiency nor HBV expression affected liver tumor development.

View Article and Find Full Text PDF

Harnessing RNA interference (RNAi) to inhibit hepatitis B virus (HBV) gene expression has promising application to therapy. Here we describe a new hepatotropic nontoxic lipid-based vector system that is used to deliver chemically unmodified small interfering RNA (siRNA) sequences to the liver. Anti HBV formulations were generated by condensation of siRNA (A component) with cationic liposomes (B component) to form AB core particles.

View Article and Find Full Text PDF

Background: RNA interference based therapeutic approaches hold promise for the treatment of patients chronically infected with hepatitis B virus (HBV). To conquer HBV infection, long-term suppression of target transcripts in all hepatocytes without toxic effects may be required. The present study explored gene-deleted adenoviral vectors (GD-AdV) lacking all viral coding sequences for delivery of the previously described short hairpin RNA (shRNA) HBVU6no.

View Article and Find Full Text PDF

RNA interference (RNAi) is a universal and evolutionarily conserved phenomenon of post-transcriptional gene silencing by means of sequence-specific mRNA degradation, triggered by small double-stranded RNAs. Because this mechanism can be efficiently induced in vivo by expressing target-complementary short hairpin RNA (shRNA) from non-viral and viral vectors, RNAi is attractive for functional genomics and human therapeutics. Here we systematically investigate the long-term effects of sustained high-level shRNA expression in livers of adult mice.

View Article and Find Full Text PDF

Exploiting the RNA interference pathway has shown promise for developing novel and effective treatment of hepatitis B virus (HBV) infection. To advance this approach, we analyzed the antiviral efficacy of a panel of 10 Pol III U6 promoter-encoded short hairpin RNAs (shRNAs) that target conserved sequences of the oncogenic HBx open reading frame. To facilitate intracellular processing, the shRNAs included mismatches in the 25-bp stem region and a terminal loop of miRNA-23.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) transgenic mice that replicate HBV in the liver generally do not exhibit gross liver pathology, while maintaining a high level (10(7) or greater) of viral titer in the blood. We have used this model to determine the minimum effects of HBV replication in the liver on cellular gene transcription, using cDNA microarrays. cDNA microarray data from sets of HBV versus control cDNA microarrays revealed a very small impact of HBV on the cellular transcriptome.

View Article and Find Full Text PDF

Hepatitis delta virus (HDV) can dramatically worsen liver disease in patients coinfected with hepatitis B virus (HBV). No effective medical therapy exists for HDV. The HDV envelope requires HBV surface antigen proteins provided by HBV.

View Article and Find Full Text PDF

This study was designed to test the efficacy of antiviral treatment with entecavir (ETV) in combination with DNA vaccines expressing duck hepatitis B virus (DHBV) antigens as a therapy for persistent DHBV infection in ducks. Ducks were inoculated with 10(9) DHBV genomes at 7 days of age, leading to widespread infection of the liver and viremia within 7 days, and were then treated orally with either ETV (0.1 mg/kg of body weight/day) or distilled water from 21 days posthatch for 244 days.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infection substantially increases the risk of chronic liver disease and hepatocellular carcinoma in humans. RNA interference (RNAi) of virus-specific genes has emerged as a potential antiviral mechanism. Here we show that RNAi can be applied to inhibit production of HBV replicative intermediates in cell culture and in immunocompetent and immunodeficient mice transfected with an HBV plasmid.

View Article and Find Full Text PDF

Hepatitis delta virus (HDV) causes both acute and chronic liver disease throughout the world. Effective medical therapy is lacking. Previous work has shown that the assembly of HDV virus-like particles (VLPs) could be abolished by BZA-5B, a compound with farnesyltransferase inhibitory activity.

View Article and Find Full Text PDF

The ability of entecavir (ETV) to inhibit Duck hepatitis B virus (DHBV) infection in duck hepatocytes and ducklings was examined using lamivudine (3TC) as a comparator drug. ETV exhibited antiviral activity (50% effective concentration [EC(50)], 0.13 nM) in DHBV-infected duck hepatocytes that was >1,000-fold more potent than that of 3TC (EC(50), 138 nM).

View Article and Find Full Text PDF