Spleen tyrosine kinase (Syk) is an attractive drug target in autoimmune, inflammatory, and oncology disease indications. The most advanced Syk inhibitor, R406, 1 (or its prodrug form fostamatinib, 2), has shown efficacy in multiple therapeutic indications, but its clinical progress has been hampered by dose-limiting adverse effects that have been attributed, at least in part, to the off-target activities of 1. It is expected that a more selective Syk inhibitor would provide a greater therapeutic window.
View Article and Find Full Text PDFAgents that target B-cell receptor (BCR) signaling in lymphoid malignancies including idelalisib (GS-1101) and fostamatinib which inhibit the delta isoform of PI3 kinase (PI3Kd) and spleen tyrosine kinase (Syk) respectively have shown significant clinical activity. By disrupting B-cell signaling pathways, idelalisib treatment has been associated with a dramatic lymph node response, but eradication of disease and relapse in high risk disease remain challenges. Targeting the BCR signaling pathway with simultaneous inhibition of PI3Kd and Syk has not yet been reported.
View Article and Find Full Text PDFBruton's tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation.
View Article and Find Full Text PDFInhibition of receptor tyrosine kinases (RTKs) such as vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth factor receptors (PDGFRs) has been validated by recently launched small molecules Sutent and Nexavar, both of which display activities against several angiogenesis-related RTKs. EphB4, a receptor tyrosine kinase (RTK) involved in the processes of embryogenesis and angiogenesis, has been shown to be aberrantly up regulated in many cancer types such as breast, lung, bladder and prostate. We propose that inhibition of EphB4 in addition to other validated RTKs would enhance the anti-angiogenic effect and ultimately result in more pronounced anti-cancer efficacy.
View Article and Find Full Text PDF