Effective, reproducible, and safe delivery of therapeutics into the inner ear is required for the prevention and treatment of hearing loss. A commonly used delivery method is via the posterior semicircular canal (PSCC); however, its specific targeting within the cochlea remains unclear, impacting precision and reproducibility. To assess safety and target specificity, we conducted in vivo recordings of the pharmacological manipulations delivered through the PSCC.
View Article and Find Full Text PDFEndolymphatic hydrops, increased endolymphatic fluid within the cochlea, is the key pathologic finding in patients with Meniere's disease, a disease of episodic vertigo, fluctuating hearing loss, tinnitus, and aural fullness. Endolymphatic hydrops also can occur after noise trauma and its presence correlates with cochlear synaptopathy, a form of hearing loss caused by reduced numbers of synapses between hair cells and auditory nerve fibers. Here we tested whether there is a mechanistic link between these two phenomena by using multimodal imaging techniques to analyze the cochleae of transgenic mice exposed to blast and osmotic challenge.
View Article and Find Full Text PDFA common processing approach for optical coherence tomography (OCT) uses a window function (e.g., Hann or rectangular window) for spectral shaping prior to calculating the Fourier transform.
View Article and Find Full Text PDFBackground: Hands-Free Georgia Law (HB673) was designed to prevent motor vehicle collisions (MVCs) by banning drivers from using their hands for non-driving-related activities, including cell phone use. We investigate HB673 effect on trauma activations secondary to MVCs in Georgia.
Methods: The Georgia Trauma Registry (GTR) was queried for MVCs from 2017 to 2019, representing the 18 months prior and following implementation of HB673.
The mammalian cochlea contains three rows of outer hair cells (OHCs) that amplify the basilar membrane traveling wave with high gain and exquisite tuning. The pattern of OHC loss caused by typical methods of producing hearing loss in animal models (noise, ototoxic exposure, or aging) is variable and not consistent along the length of the cochlea. Thus, it is difficult to use these approaches to understand how forces from multiple OHCs summate to create normal cochlear amplification.
View Article and Find Full Text PDFAlong with outer hair cell (OHC) somatic electromotility as the actuator of cochlear amplification, active hair bundle motility may be a complementary mechanism in the mammalian auditory system. Here, we searched the mouse cochlea for the presence of spontaneous bundle oscillations that have been observed in non-mammalian ears. In those systems, removal of the overlying membrane is necessary for spontaneous bundle oscillations to manifest.
View Article and Find Full Text PDFWe develop a framework for the general interpretation of the stochastic dynamical system near a limit cycle. Such quasiperiodic dynamics are commonly found in a variety of nonequilibrium systems, including the spontaneous oscillations of hair cells of the inner ear. We demonstrate quite generally that in the presence of noise, the phase of the limit cycle oscillator will diffuse, while deviations in the directions locally orthogonal to that limit cycle will display the Lorentzian power spectrum of a damped oscillator.
View Article and Find Full Text PDFMales of the coqui treefrog, , produce a distinct two-note 'co-qui' advertisement call from sunset to midnight throughout most of the year. Previous work established that both the spectrotemporal aspects of the call and the frequency of highest inner-ear sensitivity change with altitude above sea level. These variations are such that the frequency of the emitted co-note closely matches the frequency to which the inner ear is most sensitive.
View Article and Find Full Text PDFHair cells of the vertebrate vestibular and auditory systems convert mechanical inputs into electrical signals that are relayed to the brain. This transduction involves mechanically gated ion channels that open following the deflection of mechanoreceptive hair bundles that reside on top of these cells. The mechano-electrical transduction includes one or more active feedback mechanisms to keep the mechanically gated ion channels in their most sensitive operating range.
View Article and Find Full Text PDFMany recent accounts of the frog peripheral auditory system have reproduced Wever's (1973) schematic cross-section of the ear of a leopard frog. We sought to investigate to what extent this diagram is an accurate and representative depiction of the anuran inner ear, using three-dimensional reconstructions made from serial sections of Rana pipiens, Eleutherodactylus limbatus and Xenopus laevis. In Rana, three discrete contact membranes were found to separate the posterior otic (=endolymphatic) labyrinth from the periotic (=perilymphatic) system: those of the amphibian and basilar recesses and the contact membrane of the saccule.
View Article and Find Full Text PDFThree species of anuran amphibians (Odorrana tormota, Odorrana livida and Huia cavitympanum) have recently been found to detect ultrasounds. We employed immunohistochemistry and confocal microscopy to examine several morphometrics of the inner ear of these ultrasonically sensitive species. We compared morphological data collected from the ultrasound-detecting species with data from Rana pipiens, a frog with a typical anuran upper cut-off frequency of ∼3 kHz.
View Article and Find Full Text PDFUsing whole-cell patch-clamp recordings, we measured changes in membrane capacitance (ΔC (m)) in two subsets of hair cells from the leopard frog amphibian papilla (AP): the low-frequency (100-500 Hz), rostral hair cells and the high-frequency (500-1200 Hz), caudal hair cells, in order to investigate tonotopic differences in exocytosis. Depolarizations of both rostral and caudal hair cells evoked robust ΔC (m) responses of similar amplitude. However, the calcium dependence of release, i.
View Article and Find Full Text PDF