Natural products (NPs) isolated from bacteria have dramatically advanced human society, especially in medicine and agriculture. The rapidity and ease of genome sequencing have enabled bioinformatics-guided NP discovery and characterization. As a result, NP potential and diversity within a complex community, such as the microbiome of a plant, are rapidly expanding areas of scientific exploration.
View Article and Find Full Text PDFRibosomally synthesized and post-translationally modified peptide (RiPP) natural products are attractive for genome-driven discovery and re-engineering, but limitations in bioinformatic methods and exponentially increasing genomic data make large-scale mining of RiPP data difficult. We report RODEO (Rapid ORF Description and Evaluation Online), which combines hidden-Markov-model-based analysis, heuristic scoring, and machine learning to identify biosynthetic gene clusters and predict RiPP precursor peptides. We initially focused on lasso peptides, which display intriguing physicochemical properties and bioactivities, but their hypervariability renders them challenging prospects for automated mining.
View Article and Find Full Text PDFThe hygrolides, a family of 16-member-ring-containing plecomacrolides produced by Actinobacteria, exhibit numerous reported bioactivities. Using HR-MS/MS, nucleophilic 1,4-addition-based labeling, NMR, and bioinformatic analysis, we identified Streptomyces varsoviensis as a novel producer of JBIR-100, a fumarate-containing hygrolide, and elucidated the previously unknown stereochemistry of the natural product. We investigated the antimicrobial activity of JBIR-100, with preliminary insight into mode of action indicating that it perturbs the membrane of Bacillus subtilis.
View Article and Find Full Text PDFNatural products are the most historically significant source of compounds for drug development. However, unacceptably high rates of compound rediscovery associated with large-scale screening of common microbial producers have resulted in the abandonment of many natural product drug discovery efforts, despite the increasing prevalence of clinically problematic antibiotic resistance. Screening of underexplored taxa represents one strategy to avoid rediscovery.
View Article and Find Full Text PDFPlantazolicin (PZN), a polyheterocyclic, N(α),N(α)-dimethylarginine-containing antibiotic, harbors remarkably specific bactericidal activity toward strains of Bacillus anthracis, the causative agent of anthrax. Previous studies demonstrated that genetic deletion of the S-adenosyl-L-methionine-dependent methyltransferase from the PZN biosynthetic gene cluster results in the formation of desmethylPZN, which is devoid of antibiotic activity. Here we describe the in vitro reconstitution, mutational analysis, and X-ray crystallographic structure of the PZN methyltransferase.
View Article and Find Full Text PDF