Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases.
View Article and Find Full Text PDFDue to an intensive use of chemical insecticides, resistance mechanisms to insecticides together with adverse effects on non-target organisms have been largely reported. Improvement in pest control strategy represents an urgent need to optimize efficiency in the control of pest insects. In this context, a novel method based on the use of insect specific virus applied in combination with chemical insecticide, which could lead to sensitization of the insect target to insecticides is described.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
May 2013
Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes.
View Article and Find Full Text PDFTo understand better the mode of action of insecticides and repellents used in vector-borne diseases control, we developed a new biological model based on mosquito neurons isolated from adults Anopheles gambiae heads. This cellular model is well adapted to multidisciplinary approaches: electrophysiology, pharmacology, molecular biology and biochemical assays. Using RT-PCR, we demonstrated that isolated neurons express the nicotinic acetylcholine receptor subunit α1 (Agα1 nAchR), two acetylcholinesterases (AChE-1 and AChE-2) and three voltage-gated ion channels required for membrane excitability (AgCav1, AgNav1 and AgKv1).
View Article and Find Full Text PDFCandida albicans is the most important cause of systemic fungal infection in immunocompromised humans. Candidiasis is often initiated by the adherence and the colonization of inert surfaces such as peripheral venous catheters, central catheters, prosthetic cardiac valves, and other prostheses. We have studied the early stage of adherence and have shown that the disruption of C.
View Article and Find Full Text PDFThe effective management of emerging insect-borne disease is dependent on the use of safe and efficacious chemical insecticides. Given the inherent ability of insects to develop resistance, it is essential to propose innovative strategies because insecticides remain the most important element of integrated approaches to vector control. Recently, intracellular phosphorylation and dephosphorylation of membrane receptors and ion channels targeted by insecticides have been described as new processes for increasing the sensitivity of insecticides.
View Article and Find Full Text PDFBackground: Candida species have become the fourth most-frequent cause of nosocomial bloodstream infections in immunocompromised patients. Therefore, rapid identification of pathogenic fungi to species level has been considered critical for treatment. Conventional diagnostic procedures such as blood culture or biochemical tests are lacking both sensitivity and species specificity, so development of rapid diagnostic is essential.
View Article and Find Full Text PDFNearly all members of a widespread family of bacterial transposable elements related to insertion sequence 3 (IS3), therefore called the IS3 family, very likely use programmed -1 ribosomal frameshifting to produce their transposase, a protein required for mobility. Comparative analysis of the potential frameshift signals in this family suggested that most of the insertion sequences from the IS51 group contain in their mRNA an elaborate pseudoknot that could act as a recoding stimulator. It results from a specific intramolecular interaction between an apical loop and an internal loop from two stem-loop structures.
View Article and Find Full Text PDFDuring the past two decades, the prevalence of candidiasis has increased markedly and Candida albicans has now become one of the most important causes of nosocomial infections, especially after colonization of inert surfaces such as catheters or prostheses. In a previous report, we demonstrated the overexpression of 35 unidentified genes in response to adherence of C. albicans germ tubes to plastic.
View Article and Find Full Text PDFCandidiasis is often initiated by the colonization of inert surfaces. In order to elucidate the mechanisms involved in this adherence process, DNA macroarrays were used to analyze the transcriptome of Candida albicans, the main causative agent of this mycoses, in a simple adherence model using germ tubes produced in polystyrene Petri dishes. Non-adherent germ tubes produced on glass surface were used as a control.
View Article and Find Full Text PDFThe discovery of programmed -1 frameshifting at the hexanucleotide shift site CGA_AAG, in addition to the classical X_XXY_YYZ heptanucleotide shift sequences, prompted a search for instances among eubacterial insertion sequence elements. IS1222 has a CGA_AAG shift site. A genetic analysis revealed that frameshifting at this site is required for transposition.
View Article and Find Full Text PDFProgrammed -1 ribosomal frameshifting, involving tRNA re-pairing from an AAG codon to an AAA codon, has been reported to occur at the sequences CGA AAG and CAA AAG. In this study, using the recoding region of insertion sequence IS3, we have investigated the influence on frameshifting in Escherichia coli of the first codon of this type of motif by changing it to all other NNA codons. Two classes of NNA codons were distinguished, depending on whether they favor or limit frameshifting.
View Article and Find Full Text PDFThe IS911 bacterial transposable element has been analyzed for its mechanism of transposition and for the way it controls the expression of its genes by programmed -1 translational frameshifting. In the present study the prevalence of IS911 has been determined in the Enterobacteriaceae family and in other Gram-negative bacilli. Three variants, found in Escherichia coli clinical isolates and having mutations in the region implicated in frameshifting, were functionally characterized.
View Article and Find Full Text PDF