Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. Drusen are key contributors to the etiology of AMD and the ability to modulate drusen biogenesis could lead to therapeutic strategies to slow or halt AMD progression. The mechanisms underlying drusen biogenesis, however, remain mostly unknown.
View Article and Find Full Text PDFAfter cataract surgery, epithelial cells lining the anterior lens capsule can transition to one of two divergent pathways, including fibrosis which leads to posterior capsular opacification (PCO), or lens fiber cell differentiation which leads to regeneration of lens material. We previously showed that the PCO response can be suppressed with aldose reductase (AR) inhibitors. In this present study we show that AR inhibition, both genetic and pharmacologic with Sorbinil, can augment the process of lens regeneration.
View Article and Find Full Text PDFReceptor activity-modifying protein 2 (Ramp2) is a single-pass transmembrane protein that heterodimerizes with several family B G-protein coupled receptors to alter their function. Ramp2 has been primarily characterized in association with calcitonin receptor-like receptor (Calcrl, CLR), forming the canonical receptor complex for the endocrine peptide adrenomedullin (Adm, AM). However, we previously demonstrated that Ramp2+/- female mice display a constellation of endocrine-related phenotypes that are distinct from those of Adm+/- and Calcrl+/- mice, implying that RAMP2 has physiological functions beyond its canonical complex.
View Article and Find Full Text PDFAldose reductase (AR) in the lens plays an important role in the pathogenesis of diabetic cataract (DC) by contributing to osmotic and oxidative stress associated with accelerated glucose metabolism through the polyol pathway. Therefore, inhibition of AR in the lens may hold the key to prevent DC formation. Emodin, a bioactive compound isolated from plants, has been implicated as a therapy for diabetes.
View Article and Find Full Text PDFAldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications.
View Article and Find Full Text PDFObjective: Reduced maternal plasma levels of the peptide vasodilator adrenomedullin have been associated with adverse pregnancy outcomes. We measured the extent to which genetic polymorphisms in the adrenomedullin signaling pathway are associated with birth weight, glycemic regulation, and preeclampsia risk.
Study Design: We genotyped 1,353 women in the Pregnancy, Infection, and Nutrition Postpartum Study for 37 ancestry-informative markers and for single-nucleotide polymorphisms in adrenomedullin (ADM), complement factor H variant (CFH), and calcitonin receptor-like receptor (CALCRL).
Receptor activity-modifying protein 3 (RAMP3) is a single-pass transmembrane protein known to interact with and affect the trafficking of several G-protein-coupled receptors (GPCRs). We sought to determine whether RAMP3 interacts with GPR30, also known as G-protein-coupled estrogen receptor 1. GPR30 is a GPCR that binds estradiol and has important roles in cardiovascular and endocrine physiology.
View Article and Find Full Text PDFThe remodeling of maternal uterine spiral arteries (SAs) is an essential process for ensuring low-resistance, high-capacitance blood flow to the growing fetus. Failure of SAs to remodel is causally associated with preeclampsia, a common and life-threatening complication of pregnancy that is harmful to both mother and fetus. Here, using both loss-of-function and gain-of-function genetic mouse models, we show that expression of the pregnancy-related peptide adrenomedullin (AM) by fetal trophoblast cells is necessary and sufficient to promote appropriate recruitment and activation of maternal uterine NK (uNK) cells to the placenta and ultimately facilitate remodeling of maternal SAs.
View Article and Find Full Text PDFAdrenomedullin is a highly conserved peptide implicated in a variety of physiological processes ranging from pregnancy and embryonic development to tumor progression. This review highlights past and present studies that have contributed to our current appreciation of the important roles adrenomedullin plays in both normal and disease conditions. We provide a particular emphasis on the functions of adrenomedullin in vascular endothelial cells and how experimental approaches in genetic mouse models have helped to drive the field forward.
View Article and Find Full Text PDFTrends Endocrinol Metab
October 2012
A healthy pregnancy requires strict coordination of genetic, physiologic and environmental factors. The relatively common incidence of infertility and pregnancy complications has resulted in increased interest in understanding the mechanisms that underlie normal versus abnormal pregnancy. The peptide hormone adrenomedullin (AM) has recently been the focus of some exciting breakthroughs in the pregnancy field.
View Article and Find Full Text PDFSex differences exist in the hypertrophic response, cardiac remodeling, and transition to heart failure of hypertensive patients, and while some of these differences are likely influenced by estrogen, the genetic pathways downstream of estrogen that impact on cardioprotection have yet to be fully elucidated. We have previously shown that the cardioprotective effects of adrenomedullin (AM), an emerging clinical biomarker for cardiovascular disease severity, vary with sex in mouse models. AM signaling during cardiovascular stress is strongly modulated by receptor activity-modifying protein 3 (RAMP3) via its interaction with the G protein-coupled receptor calcitonin receptor-like receptor (CLR).
View Article and Find Full Text PDFADAM10 is a disintegrin metalloproteinase that processes amyloid precursor protein and ErbB ligands and is involved in the shedding of many type I and type II single membrane-spanning proteins. Like tumor necrosis factor-alpha-converting enzyme (TACE or ADAM17), ADAM10 is expressed as a zymogen, and removal of the prodomain results in its activation. Here we report that the recombinant mouse ADAM10 prodomain, purified from Escherichia coli, is a potent competitive inhibitor of the human ADAM10 catalytic/disintegrin domain, with a K(i) of 48 nM.
View Article and Find Full Text PDF