Publications by authors named "Patricia L Brubaker"

The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota.

View Article and Find Full Text PDF

The intestinal L-cell incretin, glucagon-like peptide-1 (GLP-1), exhibits a circadian pattern of secretion, thereby entraining diurnal insulin release. Secretagogin (Scgn), an actin-binding regulatory protein, is essential for the temporal peak of GLP-1 secretion in vitro. To interrogate the role of Scgn in diurnal GLP-1 secretion in vivo, peak and trough GLP-1 release were evaluated in knockout mice (Scgn-/-, Gcg-CreERT2/+; Scgnfl/fl and Vil-CreERT2/+; Scgnfl/fl), and RNA sequencing (RNA-Seq) was conducted in Scgn knockdown L-cells.

View Article and Find Full Text PDF

Metabolism and circadian rhythms are intimately linked, with circadian glucagon-like peptide-1 (GLP-1) secretion by the intestinal L-cell entraining rhythmic insulin release. GLP-1 secretion has been explored in the context of obesogenic diets, but never in a rodent model of type 2 diabetes (T2D). There is also considerable disagreement regarding GLP-1 levels in human T2D.

View Article and Find Full Text PDF

The incretin hormone glucagon-like peptide-1 (GLP-1) is secreted by the intestinal L cell in response to nutrient intake. However, GLP-1 secretion also follows a circadian rhythm which is disrupted by the saturated fatty acid palmitate in vitro and high-fat diet (HFD) feeding in vivo. The flavonoid nobiletin is a clock enhancer which improves metabolic homeostasis.

View Article and Find Full Text PDF

Background & Aims: Leucine-rich repeat-containing G-protein-coupled receptor-5 (Lgr5)+/olfactomedin-4 (Olfm4)+ intestinal stem cells (ISCs) in the crypt base are crucial for homeostatic maintenance of the epithelium. The gut hormone, glucagon-like peptide-2 (GLP-2), stimulates intestinal proliferation and growth; however, the actions of GLP-2 on the Lgr5+ ISCs remain unclear. The aim of this study was to determine whether and how GLP-2 regulates Lgr5+ ISC cell-cycle dynamics and numbers.

View Article and Find Full Text PDF

It is now well established that, beyond its role in nutrient processing and absorption, the intestine and its accompanying gut microbiome constitute a major site of immunological and endocrine regulation that mediates whole-body metabolism. Despite the growing field of host-microbe research, few studies explore what mechanisms govern this relationship in the context of pregnancy. During pregnancy, significant maternal metabolic adaptations are made to accommodate the additional energy demands of the developing fetus and to prevent adverse pregnancy outcomes.

View Article and Find Full Text PDF

Background: Short bowel syndrome (SBS) is characterized by malabsorption requiring parenteral nutrition. The intestinotrophic glucagon-like peptide (GLP)-2 receptor agonist, h[Gly2]GLP2, is used to treat patients with SBS. Evidence suggests that GLP-1 receptor agonists such as exendin-4 (Ex4) may be beneficial in SBS given their ability to increase intestinal growth and delay gastric emptying (GE).

View Article and Find Full Text PDF

Intestinal functions demonstrate circadian rhythms thought to be entrained, in part, by an organisms' intrinsic feeding and fasting periods as well as by the intestinal microbiome. Circadian disruption as a result of ill-timed nutrient exposure and obesogenic feeding poses an increased risk to disease. As such, the aim of this study was to assess the relationships between dietary timing, composition, and the microbiome with regard to rhythmic small intestinal structure and mucosal immunity.

View Article and Find Full Text PDF

Circadian rhythms are 24-h internal biological rhythms within organisms that govern virtually all aspects of physiology. Interestingly, metabolic tissues have been found to express cell-autonomous clocks that govern their rhythmic activity throughout the day. Disruption of normal circadian rhythmicity, as induced by environmental factors such as shift work, significantly increases the risk for the development of metabolic diseases, including type 2 diabetes and obesity.

View Article and Find Full Text PDF

Cross-talk between peripheral tissues is essential to ensure the coordination of nutrient intake with disposition during the feeding period, thereby preventing metabolic disease. This mini-review considers the interactions between the key peripheral tissues that constitute the metabolic clock, each of which is considered in a separate mini-review in this collation of articles published in Endocrinology in 2020 and 2021, by Martchenko et al (Circadian rhythms and the gastrointestinal tract: relationship to metabolism and gut hormones); Alvarez et al (The microbiome as a circadian coordinator of metabolism); Seshadri and Doucette (Circadian regulation of the pancreatic beta cell); McCommis et al (The importance of keeping time in the liver); Oosterman et al (The circadian clock, shift work, and tissue-specific insulin resistance); and Heyde et al (Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism). The use of positive- and negative-feedback signals, both hormonal and metabolic, between these tissues ensures that peripheral metabolic pathways are synchronized with the timing of food intake, thus optimizing nutrient disposition and preventing metabolic disease.

View Article and Find Full Text PDF

Objective: Recent studies using whole-body clock-disrupted animals identified a disruption in the circadian rhythm of the intestinal L-cell incretin hormone, glucagon-like peptide-1 (GLP-1). Although GLP-1 plays an essential role in metabolism through enhancement of both glucose-stimulated insulin secretion and satiety, recent evidence has also demonstrated its importance in regulating intestinal and microbial homeostasis. Therefore, using in vivo and in vitro models, this study assessed the role of the core circadian clock gene Arntl in the regulation of time-dependent GLP-1 secretion and its impact on the intestinal environment.

View Article and Find Full Text PDF

2021 to 2022 marks the one hundredth anniversary of ground-breaking research in Toronto that changed the course of what was, then, a universally fatal disease: type 1 diabetes. Some would argue that insulin's discovery by Banting, Best, Macleod, and Collip was the greatest scientific advance of the 20th century, being one of the first instances in which modern medical science was able to provide lifesaving therapy. As with all scientific discoveries, the work in Toronto built upon important advances of many researchers over the preceding decades.

View Article and Find Full Text PDF

Circadian rhythms are 24-hour biological rhythms within organisms that have developed over evolutionary time due to predefined environmental changes, mainly the light-dark cycle. Interestingly, metabolic tissues, which are largely responsible for establishing diurnal metabolic homeostasis, have been found to express cell-autonomous clocks that are entrained by food intake. Disruption of the circadian system, as seen in individuals who conduct shift work, confers significant risk for the development of metabolic diseases such as type 2 diabetes and obesity.

View Article and Find Full Text PDF

The incretin glucagon-like peptide 1 (GLP-1) is secreted by the intestinal L cell upon nutrient ingestion. GLP-1 also exhibits a circadian rhythm, with highest release at the onset of the feeding period. Similarly, microbial composition and function exhibit circadian rhythmicity with fasting-feeding.

View Article and Find Full Text PDF

Objectives: Short bowel syndrome (SBS) remains the leading cause of neonatal intestinal failure. Milk fat globule epidermal growth factor-8 (MFG-E8), present in human milk, has homology with epidermal growth factor (EGF), known to enhance adaptation in SBS. In this pilot study, the role of oral MFG-E8 treatment in SBS was explored in neonatal piglets.

View Article and Find Full Text PDF

Background: Dietary polyphenols including anthocyanins target multiple organs.

Objective: We aimed to assess the involvement of glucagon-like peptide 1 (GLP-1), leptin, insulin and fibroblast growth factor 21 (FGF21) in mediating metabolic beneficial effects of purified anthocyanin cyanidin-3-glucoside (Cy3G).

Methods: Intestinal proglucagon gene (Gcg; encoding GLP-1) and liver Fgf21 expression were assessed in 6-wk-old male C57BL-6J mice fed a low-fat-diet (LFD; 10% of energy from fat), alone or with 1.

View Article and Find Full Text PDF

The intestinal hormone, glucagon-like peptide-2 (GLP-2), enhances the enterocyte chylomicron production. However, GLP-2 is known to require the intestinal-epithelial insulin-like growth factor-1 receptor (IE-IGF-1R) for its other actions to increase intestinal growth and barrier function. The role of the IE-IGF-1R in enterocyte lipid handling was thus tested in the GLP-2 signaling pathway, as well as in response to a Western diet (WD).

View Article and Find Full Text PDF

Glucagon-like peptide-2 (GLP-2) is an intestinotrophic hormone that promotes intestinal growth and proliferation through downstream mediators, including epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1). EGF synergistically enhances the proliferative actions of IGF-1 in intestinal cell lines, and both of these factors are known to be essential for the trophic effects of GLP-2 in vivo. However, whether EGF and IGF-1 interact to mediate the proliferative actions of GLP-2 in vivo remains unknown.

View Article and Find Full Text PDF

Circadian secretion of the incretin, glucagon-like peptide-1 (GLP-1), correlates with expression of the core clock gene, Bmal1, in the intestinal L-cell. Several SNARE proteins known to be circadian in pancreatic α- and β-cells are also necessary for GLP-1 secretion. However, the role of the accessory SNARE, Syntaxin binding protein-1 (Stxbp1; also known as Munc18-1) in the L-cell is unknown.

View Article and Find Full Text PDF

Western diets that are high in saturated fat and sugar disrupt circadian rhythms, induce weight gain, and lead to metabolic diseases including obesity. However, the mechanistic link between altered circadian rhythms and energy homeostasis remains poorly understood. In C57BL/6J mice, consuming a Western diet for 16 weeks significantly reduced food intake (at zeitgeber 12-16), in association with decreases in hypothalamic expression of the orexigenic neuropeptides, neuropeptide Y (Npy) and agouti-related peptide (AgRP).

View Article and Find Full Text PDF

Objectives: The incretin hormone glucagon-like peptide-1 (GLP-1) is secreted from intestinal L-cells upon nutrient intake. While recent evidence has shown that GLP-1 is released in a circadian manner in rats, whether this occurs in mice and if this pattern is regulated by the circadian clock remain to be elucidated. Furthermore, although circadian GLP-1 secretion parallels expression of the core clock gene Bmal1, the link between the two remains largely unknown.

View Article and Find Full Text PDF

Microvilli are tiny projections on the apical end of enterocytes, aiding in the digestion and absorption of nutrients. One of their key features is uniform length, but how this is regulated is poorly understood. Glucagon-like peptide-2 (GLP-2) has been shown to increase microvillus length but, the requirement of its downstream mediator, the intestinal epithelial insulin-like growth factor-1 receptor (IE-IGF-1R), and the microvillus proteins acted upon by GLP-2, remain unknown.

View Article and Find Full Text PDF