Autosomal dominant and recessive forms of dystrophic epidermolysis bullosa (DEB) result from mutations in the type VII collagen gene (COL7A1). Although paradigms have emerged for genotype/phenotype correlation in DEB, some pathogenic mutations in COL7A1, notably glycine substitutions within the type VII collagen triple helix, may lead to diagnostic difficulties, since certain glycine substitutions can result in either dominant or recessive mutant alleles. Delineation of glycine substitution mutations into two discrete groups, however, is made difficult by observations that, for some particular glycine substitutions in type VII collagen, the same mutation can result in both dominant and recessive disease.
View Article and Find Full Text PDFBackground: The inversa type of recessive dystrophic epidermolysis bullosa (RDEB-I) is a rare variant of dystrophic epidermolysis bullosa, characterised by blistering in the body flexures, trunk, and mucosa. The cause of this specific distribution is unknown. So far, 20 COL7A1 genotypes have been described in RDEB-I and genotype-phenotype correlations have not been studied extensively.
View Article and Find Full Text PDFMutations in the PLEC1 gene encoding plectin have been reported in neonatal epidermolysis bullosa simplex with muscular dystrophy of later-onset (EBS-MD). A neuromuscular transmission defect has been reported in one previous patient. We report a boy presenting from birth with features of a congenital muscular dystrophy and late-onset myasthenic symptoms.
View Article and Find Full Text PDFTransmission electron microscopy (TEM) has long been the best available method for the diagnosis of epidermolysis bullosa. Today, TEM is largely superseded by immunofluorescence microscopy mapping, which is generally more available. This article discusses its continuing role in confirming or refining results obtained by other methods, or in establishing the diagnosis where other techniques have been unsuitable or have failed.
View Article and Find Full Text PDFDesmosomes are intercellular adhesive junctions and attachment sites for the intermediate filament (IF) cytoskeleton, prominent in tissues subject to high levels of mechanical stress such as the epidermis and heart. The obligate desmosomal constituent, plakoglobin (PG), is involved in coupling transmembrane desmosomal components with IFs. PG also contributes to intercellular adhesion through adherens junctions and has additional signaling roles.
View Article and Find Full Text PDFRecessive dystrophic epidermolysis bullosa (RDEB) is a severe inherited skin-blistering disorder caused by mutations in the COL7A1 gene that lead to reduced type-VII collagen and defective anchoring fibrils at the dermal-epidermal junction (DEJ). Presently there are no effective treatments for this disorder. Recent mouse studies have shown that intradermal injections of normal human fibroblasts can generate new human type-VII collagen and anchoring fibrils at the DEJ.
View Article and Find Full Text PDFThe mechanobullous disease Hallopeau-Siemens recessive dystrophic epidermolysis bullosa (HS-RDEB) results from mutations in the type VII collagen gene (COL7A1) on chromosome 3p21.31. Typically, there are frameshift, splice site, or nonsense mutations on both alleles.
View Article and Find Full Text PDFJ Invest Dermatol
February 2005
Lympho-epithelial Kazal-type-related inhibitor (LEKTI) is a putative serine protease inhibitor encoded by serine protease inhibitor Kazal-type 5 (SPINK5). It is strongly expressed in differentiated keratinocytes in normal skin but expression is markedly reduced or absent in Netherton syndrome (NS), a severe ichthyosis caused by SPINK5 mutations. At present, however, both the precise intracellular localization and biological roles of LEKTI are not known.
View Article and Find Full Text PDFHereditary skin disorders resulting from desmosome gene pathology may preferentially involve the palms and soles. Why this is so is not clear. Moreover, even in normal control skin it is unknown whether there are differences in desmosome number, size or structural organization in palmoplantar sites compared with skin from other body regions.
View Article and Find Full Text PDFAblation of the desmosomal plaque component plakophilin 1 underlies the autosomal recessive genodermatosis, skin fragility-ectodermal dysplasia syndrome (OMIM 604536). Skin from affected patients is thickened with increased scale, and there is loss of adhesion between adjacent keratinocytes, which exhibit few small, poorly formed desmosomes. To investigate further the influence of plakophilin 1 on keratinocyte adhesion and desmosome morphology, we compared plakophilin 1-deficient keratinocytes (vector controls) with those expressing recombinant plakophilin 1 introduced by retroviral transduction.
View Article and Find Full Text PDFLipoid proteinosis (LP), also known as hyalinosis cutis et mucosae or Urbach-Wiethe disease (OMIM 247100) is a rare, autosomal recessive disorder typified by generalized thickening of skin, mucosae and certain viscera. Classical features include beaded eyelid papules and laryngeal infiltration leading to hoarseness. Histologically, there is widespread deposition of hyaline (glycoprotein) material and disruption/reduplication of basement membrane.
View Article and Find Full Text PDF