This article presents a case study about the impact that our mobile laboratory, the Rutgers Science Explorer bus, has had on the professional development of graduate students and content enrichment for the middle school communities in the state of New Jersey.
View Article and Find Full Text PDFThe RNA-binding protein AUF1 binds AU-rich elements in 3'-untranslated regions to regulate mRNA degradation and/or translation. Many of these mRNAs are predicted microRNA targets as well. An emerging theme in post-transcriptional control of gene expression is that RNA-binding proteins and microRNAs co-regulate mRNAs.
View Article and Find Full Text PDFRNA binding proteins are a large and varied group of factors that are the driving force behind post-transcriptional gene regulation. By analogy with transcription factors, RNA binding proteins bind to various regions of the mRNAs that they regulate, usually upstream or downstream from the coding region, and modulate one of the five major processes in mRNA metabolism: splicing, polyadenylation, export, translation and decay. The most abundant RNA binding protein domain is called the RNA Recognition Motif (RRM)1.
View Article and Find Full Text PDF