Teleost fish skin-scales are essential for protection and homeostasis and the largest tissue in direct contact with the environment, but their potential as early indicators of pollutant exposure are hampered by limited knowledge about this model. This study evaluated multi-level impacts of in vivo exposure of European sea bass to fluoxetine (FLX, a selective serotonin-reuptake inhibitor and an emerging pollutant) and 17β-estradiol (E2, a natural hormone and representative of diverse estrogenic endocrine-disrupting pollutants). Exposed fish had significantly increased circulating levels of FLX and its active metabolite nor-FLX that, in contrast to E2, did not have estrogenic effects on most fish plasma and scale indicators.
View Article and Find Full Text PDFEstrogens play well-recognized roles in reproduction across vertebrates, but also intervene in a wide range of other physiological processes, including mineral homeostasis. Classical actions are triggered when estrogens bind and activate intracellular estrogen receptors (ERs), regulating the transcription of responsive genes, but rapid non-genomic actions initiated by binding to plasma membrane receptors were recently described. A wide range of structurally diverse compounds from natural and anthropogenic sources have been shown to interact with and disrupt the normal functions of the estrogen system, and fish are particularly vulnerable to endocrine disruption, as these compounds are frequently discharged or run-off into waterways.
View Article and Find Full Text PDFIn fish, the onset of puberty, the transition from juvenile to sexually reproductive adult animals, is triggered by the activation of pituitary gonadotropin secretion and its timing is influenced by external and internal factors that include the growth/adiposity status of the animal. Kisspeptins have been implicated in the activation of puberty but peripheral signals coming from the immature gonad or associated to the metabolic/nutritional status are also thought to be involved. Therefore we hypothesize the importance of the galinergic system in the brain and testis of pre-pubertal male sea bass as a candidate to translate the signals leading to activation of testicular maturation.
View Article and Find Full Text PDFMar Biotechnol (NY)
December 2013
Skin and scale formation and regeneration in teleosts have mainly been described from a morphological perspective, and few studies of the underlying molecular events exist. The present study evaluates (1) the change in the skin proteome during its regeneration in a marine teleost fish (gilthead sea bream, Sparus aurata) and (2) the impact of oestradiol-17β (Ε2) on regeneration and the involvement of oestrogen receptor (ER) isoforms. Thirty-five candidate proteins were differentially expressed (p < 0.
View Article and Find Full Text PDFStanniocalcin (STC), first isolated from the corpuscles of Stannius (CS) of teleost fishes and a systemic regulator of mineral metabolism, is present in all vertebrates as two isoforms, STC1 and STC2, encoded by separate genes. Here we show that the genome of Tetraodon nigroviridis, and other teleosts, possess duplicate genes for each STC isoform, designated stc1-a and -b, and stc2-a and -b. Stc1-a was cloned from CS, stc2-a from muscle and the two novel cDNAs, stc1-b and stc2-b, from brain.
View Article and Find Full Text PDFBackground: Calcium ion is tightly regulated in body fluids and for euryhaline fish, which are exposed to rapid changes in environmental [Ca2+], homeostasis is especially challenging. The gill is the main organ of active calcium uptake and therefore plays a crucial role in the maintenance of calcium ion homeostasis. To study the molecular basis of the short-term responses to changing calcium availability, the whole gill transcriptome obtained by Super Serial Analysis of Gene Expression (SuperSAGE) of the euryhaline teleost green spotted puffer fish, Tetraodon nigroviridis, exposed to water with altered [Ca2+] was analysed.
View Article and Find Full Text PDFA yeast (Saccharomyces cerevisiae)-based assay was developed and tested with steroids and chemicals (mostly pesticides). The induction of beta-galactosidase activity was strictly dependent on the presence of seabream (Sparus aurata) betaa estrogen receptor (sbERbetaa) and substances known to have estrogenic activity. 17beta-Estradiol (E(2)) and diethylstilbestrol (DES), both agonists, were most active and the antagonist tamoxifen (TAM) was 14-fold less active than E(2).
View Article and Find Full Text PDFBackground: ICI 182,780 (ICI) belongs to a new class of antiestrogens developed to be pure estrogen antagonists and, in addition to its therapeutic use, it has been used to knock-out estrogen and estrogen receptor (ER) actions in several mammalian species. In the present study, the effects and mechanism of action of ICI were investigated in the teleost fish, sea bream (Sparus auratus).
Methods: Three independent in vivo experiments were performed in which mature male tilapia (Oreochromis mossambicus) or sea bream received intra-peritoneal implants containing estradiol-17 beta (E2), ICI or a combination of both compounds.
Estrogens control many physiological processes in both female and male vertebrates, mostly mediated by specific nuclear estrogen receptors (ER). Two ER subtypes (ERalpha and ERbeta) are present in most vertebrates, including the sea bream (Sparus auratus) a hermaphrodite teleost fish. In the present study several variant cDNAs encoding a second sea bream ERbeta (sbERbetab) is reported.
View Article and Find Full Text PDF