Publications by authors named "Patricia Glazebrook"

Diversity in the functional expression of ion channels contributes to the unique patterns of activity generated in visceral sensory A-type myelinated neurons versus C-type unmyelinated neurons in response to their natural stimuli. In the present study, Kv2 channels were identified as underlying a previously uncharacterized delayed rectifying potassium current expressed in both A- and C-type nodose ganglion neurons. Kv2.

View Article and Find Full Text PDF

This study was designed to evaluate cardiac and respiratory dysfunction in a mouse model of sudden unexpected death in epilepsy i.e., SUDEP.

View Article and Find Full Text PDF

Objective: Fetal fatty acid (FA) delivery is ultimately controlled by placental transport. Focus has been the maternal-placental interface, but regulation at the feto-placental interface is unknown.

Methods: Placental macrovascular endothelial cells (EC) (n = 4/group) and trophoblasts (TB) (n = 5/group) were isolated from lean (pregravid BMI <25 kg/m) and obese (body mass index (BMI) > 30) women.

View Article and Find Full Text PDF

Obese women, on average, give birth to babies with high fat mass. Placental lipid metabolism alters fetal lipid delivery, potentially moderating neonatal adiposity, yet how it is affected by maternal obesity is poorly understood. We hypothesized that fatty acid (FA) accumulation (esterification) is higher and FA β-oxidation (FAO) is lower in placentas from obese, compared with lean women.

View Article and Find Full Text PDF

Background: The placentas of obese women accumulate lipids that may alter fetal lipid exposure. The long-chain omega-3 fatty acids (n–3 FAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) alter FA metabolism in hepatocytes, although their effect on the placenta is poorly understood.

Objective: We aimed to investigate whether n–3 supplementation during pregnancy affects lipid metabolism in the placentas of overweight and obese women at term.

View Article and Find Full Text PDF

Previous reports have suggested that the abrogation of gastric inhibitory polypeptide (GIP) signaling could be exploited to prevent and treat obesity and obesity-related disorders in humans. This study was designed to determine whether immunoneutralization of GIP, using a newly developed specific monoclonal antibody (mAb), would prevent the development of obesity. Specific mAb directed against the carboxy terminus of mouse GIP was identified, and its effects on the insulin response to oral and to intraperitoneal (ip) glucose and on weight gain were evaluated.

View Article and Find Full Text PDF

Study Question: What are the effects of fatty acids on placental inflammatory cytokine with respect to toll-like receptor-4/nuclear factor-kappa B (TLR4/NF-kB)?

Summary Answer: Exogenous fatty acids induce a pro-inflammatory cytokine response in human placental cells in vitro via activation of TLR4 signaling pathways.

What Is Known Already: The placenta is exposed to changes in circulating maternal fatty acid concentrations throughout pregnancy. Fatty acids are master regulators of innate immune pathways through recruitment of toll-like receptors and activation of cytokine synthesis.

View Article and Find Full Text PDF

Sex differences in baroreflex (BRx) function are well documented. Hormones likely contribute to this dimorphism, but many functional aspects remain unresolved. Our lab has been investigating a subset of vagal sensory neurons that constitute nearly 50% of the total population of myelinated aortic baroreceptors (BR) in female rats but less than 2% in male rats.

View Article and Find Full Text PDF

Despite considerable effort, the identification of genes that regulate complex multigenic traits such as obesity has proven difficult with conventional methodologies. The use of a chromosome substitution strain-based mapping strategy based on deep congenic analysis overcame many of the difficulties associated with gene discovery and led to the finding that the juxtaparanodal proteins CNTNAP2 and TAG1 regulate diet-induced obesity. The effects of a mild Cntnap2 mutation on body weight were highly dependent on genetic background, as both obesity-promoting and obesity-resistant effects of Cntnap2 were observed on different genetic backgrounds.

View Article and Find Full Text PDF

The predominant calcium current in nodose sensory neurons, including the subpopulation of baroreceptor neurons, is the N-type channel, Cav2.2. It is also the primary calcium channel responsible for transmitter release at their presynaptic terminals in the nucleus of the solitary tract in the brainstem.

View Article and Find Full Text PDF

The voltage-gated K(+) channel Kv1.3 has been reported to regulate transmitter release in select central and peripheral neurons. In this study, we evaluated its role at the synapse between visceral sensory afferents and secondary neurons in the nucleus of the solitary tract (NTS).

View Article and Find Full Text PDF

High conductance calcium-activated potassium (BK(Ca)) channels can modulate cell excitability and neurotransmitter release at synaptic and afferent terminals. BK(Ca) channels are present in primary afferents of most, if not, all internal organs and are an intriguing target for pharmacological manipulation of visceral sensation. Our laboratory has a long-standing interest in the neurophysiological differences between myelinated and unmyelinated visceral afferent function.

View Article and Find Full Text PDF

The chemosensory glomus cells of the carotid body (CB) detect changes in O2 tension. Carotid sinus nerve fibers, which originate from peripheral sensory neurons located within the petrosal ganglion, innervate the CB. Release of transmitter from glomus cells activates the sensory afferent fibers to transmit information to the nucleus of the solitary tract in the brainstem.

View Article and Find Full Text PDF

The ion channels responsible for the pattern and frequency of discharge in arterial baroreceptor terminals are, with few exceptions, unknown. In this study we examined the contribution of KCNQ potassium channels that underlie the M-current to the function of the arterial baroreceptors. Labelled aortic baroreceptor neurons, immunohistochemistry and an isolated aortic arch preparation were used to demonstrate the presence and function of KCNQ2, KCNQ3 and KCNQ5 channels in aortic baroreceptors.

View Article and Find Full Text PDF

Members of the Canonical Transient Receptor Potential (TRPC) family of ionic channels are able to form homo- and heterotetrameric channels. Depending on the study, TRPC1 has been detected on both the surface and inside the cell, probably in the endoplasmic reticulum (ER). Likewise, TRPC1 has been described both as a store-operated channel and as one unable to function when forming a homotetramer.

View Article and Find Full Text PDF

The study of the TRPC cation channels as signal transducers in sensory neurons is in its infancy. Mechanoreceptors that monitor arterial pressure are prime candidates for the involvement of TRPC channels as either primary mechanical transducers or as modulators of the transduction process. Their activity patterns can be regulated by growth factors such as BDNF and by a variety of ligands that activate Gq-coupled receptors, mechanisms that have been shown in heterologous expression systems to activate TRPC channels.

View Article and Find Full Text PDF

Mutations in the potassium channel gene Kv1.1 are associated with human episodic ataxia type 1 (EA-1) syndrome characterized by movement disorders and epilepsy. Ataxic episodes in EA-1 patients are often associated with exercise or emotional stress, which suggests a prominent role for the autonomic nervous system.

View Article and Find Full Text PDF

Until recently most of the published studies addressing the mechanisms of activation of TRPC channels have been carried out in heterologous expression systems. Lack of specific antagonists for the TRPC channels has hampered functional studies of endogenous channels. We approached the role of TRPC channels in native tissue with a study of the distribution of the channel proteins in the carotid chemosensory pathway in the rat.

View Article and Find Full Text PDF

Sensory neurons express hyperpolarization-activated currents (I(H)) that differ in magnitude and kinetics within the populations. We investigated the structural basis for these differences and explored the functional role of the I(H) channels in sensory neurons isolated from rat nodose ganglia. Immunohistochemical studies demonstrated a differential distribution of hyperpolarization-activated cyclic nucleotide-gated (HCN) protein (HCN1, HCN2, HCN4) in sensory neurons and peripheral terminals.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessions5mhjs40dgu2riftnrmn7q6q1238iu36): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once