Minimal residual disease (MRD) diagnostics are implemented in most clinical protocols for patients with acute lymphoblastic leukaemia (ALL) and are mostly performed using rearranged immunoglobulin (IG) and/or T-cell receptor (TR) gene rearrangements as molecular polymerase chain reaction targets. Unfortunately, in 5-10% of patients no or no sensitive IG/TR targets are available, and patients therefore cannot be stratified appropriately. In the present study, we used fusion genes and genomic deletions as alternative MRD targets in these patients, which retrospectively revealed appropriate MDR stratification in 79% of patients with no (sensitive) IG/TR target, and a different risk group stratification in more than half of the cases.
View Article and Find Full Text PDFB-cell prolymphocytic leukemia (B-PLL) is a rare mature B-cell malignancy that may be hard to distinguish from mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). B-PLL cases with a t(11;14) were redefined as MCL in the World Health Organization 2008 classification. We evaluated 13 B-PLL patients [7 being t(11;14)-positive (B-PLL+) and 6 negative (B-PLL-)] and compared them with MCL and CLL patients.
View Article and Find Full Text PDFMinimal residual disease (MRD) diagnostics are used for risk group stratification in several acute lymphoblastic leukaemia (ALL) treatment protocols. It is, however, unclear whether MRD is homogeneously distributed within the bone marrow (BM) and whether this affects MRD diagnostics. We, therefore, analysed MRD levels in 141 paired BM samples (two independent punctures at different locations) from 26 ALL patients by real-time quantitative polymerase chain reaction (PCR) analysis of immunoglobulin and T-cell receptor gene rearrangements.
View Article and Find Full Text PDFThe frequently occurring T-cell receptor delta (TCRD) deletions in precursor-B-acute lymphoblastic leukemia (precursor-B-ALL) are assumed to be mainly caused by Vdelta2-Jalpha rearrangements. We designed a multiplex polymerase chain reaction tified clonal Vdelta2-Jalpha rearrangements in 141 of 339 (41%) childhood and 8 of 22 (36%) adult precursor-B-ALL. A significant proportion (44%) of Vdelta2-Jalpha rearrangements in childhood precursor-B-ALL were oligoclonal.
View Article and Find Full Text PDF