The present study shows a comparison between two sintering processes, microwave and conventional sintering, for the manufacture of NiTi porous specimens starting from powder mixtures of nickel and titanium hydrogenation-dehydrogenation (HDH) milled by mechanical alloying for a short time (25 min). The samples were sintered at 850 °C for 15 min and 120 min, respectively. Both samples exhibited porosity, and the pore size results are within the range of the human bone.
View Article and Find Full Text PDFActuators using Shape Memory Alloy (SMA) springs could operate in different mechanical systems requiring geometric flexibility and high performance. The aim of the present study is to highlight the potential of these actuators, using their dimensional variations resulting from the phase transformations of NiTi springs (SMA) to make the movements of the system's mobile components reversible. This reversibility is due to thermal-induced martensitic transformation of NiTi springs.
View Article and Find Full Text PDFThe structural and thermophysical characteristics of an Ni-rich NiTi alloy rod produced on a laboratory scale was studied. The soak temperature of the solution heat-treatment steps above 850 °C taking advantage of the precipitate dissolution to provide a matrix homogenization, but it takes many hours (24 to 48) when used without thermomechanical steps. Therefore, the suitable reheating to apply between the forging process steps is very important, because the product's structural characteristics are dependent on the thermomechanical processing history, and the time required to expose the material to high temperatures during the processing is reduced.
View Article and Find Full Text PDFThe interaction between the stress-induced martensitic transformation and resistivity behavior of superelastic NiTi shape memory alloy (SMA) was studied. Strain-controlled low-cycle fatigue up to 6% was monitored by in situ electrical resistivity measurements. The experimental results show that a great motion of martensite fronts results in a significant accumulation of defects, as evidenced by transmission electron microscopy (TEM), before and after the tensile cycles.
View Article and Find Full Text PDF