We previously reported differences in stiffness between macro- and micro-vessels in type 2 diabetes (T2DM). The aim of this study was to define the mechanical properties of the ECM independent of vascular cells in coronary resistance micro-vessels (CRMs) and macro-vessels (aorta) in control Db/db and T2DM db/db mice. Passive vascular remodeling and mechanics were measured in both intact and decellularized CRMs and aortas from 0 to 125 mmHg.
View Article and Find Full Text PDFDiabetes is an independent risk factor for cardiovascular disease that can eventually cause cardiomyopathy and heart failure. Cardiac fibroblasts (CF) are the critical mediators of physiological and pathological cardiac remodeling; however, the effects of hyperglycemia on cardiac fibroblast function and differentiation is not well known. Here, we performed a comprehensive investigation on the effects of hyperglycemia on cardiac fibroblasts and show that hyperglycemia enhances cardiac fibroblast function and differentiation.
View Article and Find Full Text PDFRationale: We previously reported that type VI collagen deposition increases in the infarcted myocardium in vivo. To date, a specific role for this nonfibrillar collagen has not been explored in the setting of myocardial infarction (MI).
Objective: To determine whether deletion of type VI collagen in an in vivo model of post-MI wound healing would alter cardiac function and remodeling in the days to weeks after injury.
Hepatocellular carcinoma (HCC), one of the most lethal cancers, results in more than one million fatalities worldwide every year. In view of the limited therapeutic alternatives and poor prognosis of liver cancer, preventive control approaches, notably chemoprevention, have been considered to be the best strategy in lowering the present prevalence of the disease. Resveratrol, a naturally occurring antioxidant and antiinflammatory agent found in grapes and red wine, inhibits carcinogenesis with a pleiotropic mode of action.
View Article and Find Full Text PDFDiabetic patients are prone to developing myocardial fibrosis and suffer from decreased wound healing capabilities. The purpose of this study was to determine whether diabetes alters cardiac fibroblast activity in the myocardium in a 6-wk streptozotocin-induced type 1 diabetic model. In vivo echocardiography indicated significant dilation of the left ventricle (LV) in the diabetic animals, while cardiac function was comparable to that in the normal group.
View Article and Find Full Text PDFJ Mol Cell Cardiol
March 2010
Cardiac remodeling is accelerated during pathological conditions and several anabolic and catabolic regulators work in concert to repair the myocardium and maintain its functionality. The fibroblasts play a major role in this process via collagen deposition as well as supplying the degradative matrix metalloproteinases. During the more acute responses to a myocardial infarction (MI) the heart relies on a more aggressive wound healing sequence that includes the myofibroblasts, specialized secretory cells necessary for infarct scar formation and thus, rescue of the myocardium.
View Article and Find Full Text PDFCardiac fibroblasts and myofibroblasts are responsible for post-MI remodeling which occurs via regulation of extracellular matrix (ECM). Accelerated post-MI remodeling leads to excessive ECM deposition and fibrosis, contributing to impaired contractile function, arrhythmias, and heart failure. We have previously reported that type VI collagen induces myofibroblast differentiation in cultured cardiac fibroblasts, and that type VI collagen and myofibroblast content were both elevated in the myocardium 20 weeks post-MI.
View Article and Find Full Text PDFAngiotensin II (Ang II)-induced proliferation of cardiac fibroblasts is a major contributing factor to the pathogenesis of cardiac fibrosis. Ang II activates extracellular signal-regulated kinase (ERK) 1/2 to induce cardiac fibroblast proliferation, but the signaling pathways leading to ERK 1/2 activation have not been elucidated in these cells. The goal of the current study was to identify the intracellular mediators of Ang II-induced ERK 1/2 activation in adult rat cardiac fibroblasts.
View Article and Find Full Text PDF