Publications by authors named "Patricia Dugan"

When we vocalize, our brain distinguishes self-generated sounds from external ones. A corollary discharge signal supports this function in animals; however, in humans, its exact origin and temporal dynamics remain unknown. We report electrocorticographic recordings in neurosurgical patients and a connectivity analysis framework based on Granger causality that reveals major neural communications.

View Article and Find Full Text PDF

Sentence production is the uniquely human ability to transform complex thoughts into strings of words. Despite the importance of this process, language production research has primarily focused on single words. It remains an untested assumption that insights from this literature generalize to more naturalistic utterances like sentences.

View Article and Find Full Text PDF

Convolutional neural networks (CNN) show great promise for translating decades of research on structural abnormalities in temporal lobe epilepsy into clinical practice. Three-dimensional CNNs typically outperform two-dimensional CNNs in medical imaging. Here we explore for the first time whether a three-dimensional CNN outperforms a two-dimensional CNN for identifying temporal lobe epilepsy-specific features on MRI.

View Article and Find Full Text PDF

Across the animal kingdom, neural responses in the auditory cortex are suppressed during vocalization, and humans are no exception. A common hypothesis is that suppression increases sensitivity to auditory feedback, enabling the detection of vocalization errors. This hypothesis has been previously confirmed in non-human primates, however a direct link between auditory suppression and sensitivity in human speech monitoring remains elusive.

View Article and Find Full Text PDF

Objective: To characterize the experience of people with epilepsy and aligned healthcare workers (HCWs) during the first 18 months of the COVID-19 pandemic and compare experiences in high-income countries (HICs) with non-HICs.

Methods: Separate surveys for people with epilepsy and HCWs were distributed online in April 2020. Responses were collected to September 2021.

View Article and Find Full Text PDF

Objective: We retrospectively explored patients with drug-resistant epilepsy (DRE) who previously underwent presurgical evaluation to identify correlations between surgical outcomes and pathogenic variants in epilepsy genes.

Methods: Through an international collaboration, we evaluated adult DRE patients who were screened for surgical candidacy. Patients with pathogenic (P) or likely pathogenic (LP) germline variants in genes relevant to their epilepsy were included, regardless of whether the genetic diagnosis was made before or after the presurgical evaluation.

View Article and Find Full Text PDF

Effective communication hinges on a mutual understanding of word meaning in different contexts. We recorded brain activity using electrocorticography during spontaneous, face-to-face conversations in five pairs of epilepsy patients. We developed a model-based coupling framework that aligns brain activity in both speaker and listener to a shared embedding space from a large language model (LLM).

View Article and Find Full Text PDF

Recent research has used large language models (LLMs) to study the neural basis of naturalistic language processing in the human brain. LLMs have rapidly grown in complexity, leading to improved language processing capabilities. However, neuroscience researchers haven't kept up with the quick progress in LLM development.

View Article and Find Full Text PDF

Syntax, the abstract structure of language, is a hallmark of human cognition. Despite its importance, its neural underpinnings remain obscured by inherent limitations of non-invasive brain measures and a near total focus on comprehension paradigms. Here, we address these limitations with high-resolution neurosurgical recordings (electrocorticography) and a controlled sentence production experiment.

View Article and Find Full Text PDF

Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation occurs across the visual cortex, it is unclear how adaptation patterns and computational mechanisms differ across the visual hierarchy. Here we characterize two signatures of short-term neural adaptation in time-varying intracranial electroencephalography (iEEG) data collected while participants viewed naturalistic image categories varying in duration and repetition interval.

View Article and Find Full Text PDF

The ability to connect the form and meaning of a concept, known as word retrieval, is fundamental to human communication. While various input modalities could lead to identical word retrieval, the exact neural dynamics supporting this convergence relevant to daily auditory discourse remain poorly understood. Here, we leveraged neurosurgical electrocorticographic (ECoG) recordings from 48 patients and dissociated two key language networks that highly overlap in time and space integral to word retrieval.

View Article and Find Full Text PDF

Objective: This study investigates speech decoding from neural signals captured by intracranial electrodes. Most prior works can only work with electrodes on a 2D grid (i.e.

View Article and Find Full Text PDF

Contextual embeddings, derived from deep language models (DLMs), provide a continuous vectorial representation of language. This embedding space differs fundamentally from the symbolic representations posited by traditional psycholinguistics. We hypothesize that language areas in the human brain, similar to DLMs, rely on a continuous embedding space to represent language.

View Article and Find Full Text PDF

Cortical regions supporting speech production are commonly established using neuroimaging techniques in both research and clinical settings. However, for neurosurgical purposes, structural function is routinely mapped peri-operatively using direct electrocortical stimulation. While this method is the gold standard for identification of eloquent cortical regions to preserve in neurosurgical patients, there is lack of specificity of the actual underlying cognitive processes being interrupted.

View Article and Find Full Text PDF
Article Synopsis
  • New-onset refractory status epilepticus (NORSE) is a serious condition where the cause is unknown in 30%-50% of patients and treatment options are not standardized.
  • A study of 48 patients who survived the initial phase revealed that many experienced high rates of ongoing epilepsy and significant cognitive, vocational, and mental health challenges after discharge.
  • The findings highlight that the long-term outcomes for NORSE survivors are often devastating, underlining the urgent need for better understanding and targeted treatment methods.
View Article and Find Full Text PDF

Across the animal kingdom, neural responses in the auditory cortex are suppressed during vocalization, and humans are no exception. A common hypothesis is that suppression increases sensitivity to auditory feedback, enabling the detection of vocalization errors. This hypothesis has been previously confirmed in non-human primates, however a direct link between auditory suppression and sensitivity in human speech monitoring remains elusive.

View Article and Find Full Text PDF

Objective: This study was undertaken to conduct external validation of previously published epilepsy surgery prediction tools using a large independent multicenter dataset and to assess whether these tools can stratify patients for being operated on and for becoming free of disabling seizures (International League Against Epilepsy stage 1 and 2).

Methods: We analyzed a dataset of 1562 patients, not used for tool development. We applied two scales: Epilepsy Surgery Grading Scale (ESGS) and Seizure Freedom Score (SFS); and two versions of Epilepsy Surgery Nomogram (ESN): the original version and the modified version, which included electroencephalographic data.

View Article and Find Full Text PDF

Speech production is a complex human function requiring continuous feedforward commands together with reafferent feedback processing. These processes are carried out by distinct frontal and temporal cortical networks, but the degree and timing of their recruitment and dynamics remain poorly understood. We present a deep learning architecture that translates neural signals recorded directly from the cortex to an interpretable representational space that can reconstruct speech.

View Article and Find Full Text PDF

Introduction: For drug resistant epilepsy patients who are either not candidates for resective surgery or have already failed resective surgery, neuromodulation is a promising option. Neuromodulatory approaches include responsive neurostimulation (RNS), deep brain stimulation (DBS), and vagal nerve stimulation (VNS). Thalamocortical circuits are involved in both generalized and focal onset seizures.

View Article and Find Full Text PDF

Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation occurs across the visual cortex, it is unclear how adaptation patterns and computational mechanisms differ across the visual hierarchy. Here we characterize two signatures of short-term neural adaptation in time-varying intracranial electroencephalography (iEEG) data collected while participants viewed naturalistic image categories varying in duration and repetition interval.

View Article and Find Full Text PDF

Decoding human speech from neural signals is essential for brain-computer interface (BCI) technologies restoring speech function in populations with neurological deficits. However, it remains a highly challenging task, compounded by the scarce availability of neural signals with corresponding speech, data complexity, and high dimensionality, and the limited publicly available source code. Here, we present a novel deep learning-based neural speech decoding framework that includes an ECoG Decoder that translates electrocorticographic (ECoG) signals from the cortex into interpretable speech parameters and a novel differentiable Speech Synthesizer that maps speech parameters to spectrograms.

View Article and Find Full Text PDF

Cortical regions supporting speech production are commonly established using neuroimaging techniques in both research and clinical settings. However, for neurosurgical purposes, structural function is routinely mapped peri-operatively using direct electrocortical stimulation. While this method is the gold standard for identification of eloquent cortical regions to preserve in neurosurgical patients, there is lack of specificity of the actual underlying cognitive processes being interrupted.

View Article and Find Full Text PDF

Effective communication hinges on a mutual understanding of word meaning in different contexts. The embedding space learned by large language models can serve as an explicit model of the shared, context-rich meaning space humans use to communicate their thoughts. We recorded brain activity using electrocorticography during spontaneous, face-to-face conversations in five pairs of epilepsy patients.

View Article and Find Full Text PDF

Unlabelled: Neuronal oscillations at about 10 Hz, called alpha oscillations, are often thought to arise from synchronous activity across occipital cortex, reflecting general cognitive states such as arousal and alertness. However, there is also evidence that modulation of alpha oscillations in visual cortex can be spatially specific. Here, we used intracranial electrodes in human patients to measure alpha oscillations in response to visual stimuli whose location varied systematically across the visual field.

View Article and Find Full Text PDF