Publications by authors named "Patricia Coimbra"

The efficiency of photodynamic therapy is often limited by the scarcity of oxygen at the target site. To address this problem, this work proposes the development of a new nanosystem for antimicrobial photodynamic therapy applications (aPDT) where the natural-origin photosensitizer curcumin (CUR) is immersed in an oxygen-rich environment. Inspired by the perfluorocarbon-based photosensitizer/O nanocarriers reported in the literature, we developed a new type of silica nanocapsule containing curcumin dissolved in three hydrophobic ionic liquids (ILs) with high oxygen dissolving capacities.

View Article and Find Full Text PDF

Hydrogels are extensively used in the biomedical field, as drug delivery systems, wound dressings, contact lenses or as scaffolds for tissue engineering. Due to their polymeric nature and the presence of high amounts of water in their structure, hydrogels generally present high sensitivity to terminal sterilization. The establishment of an efficient sterilization protocol that does not compromise the functional properties of the hydrogels is one of the challenges faced by researchers when developing a hydrogel for a specific application.

View Article and Find Full Text PDF

The visual impairment that often leads to blindness causes a higher morbidity rate. The goal of this work is to create a novel biodegradable polymeric implant obtained from coaxial fibers containing the dispersed drug-acetazolamide-in order to achieve sustained drug release and increase patient compliance, which is of the highest importance. Firstly, during this work, uncoated implants were produced by electrospinning, and rolled in the shape of small cylinders that were composed of uniaxial and coaxial fibers with immobilized drug inside.

View Article and Find Full Text PDF

Purpose: To assess the possibility of using acrylic intraocular lenses (IOLs) to ensure controlled and sustained release of moxifloxacin, an antibiotic commonly used for endophthalmitis prophylaxis after cataract surgery.

Setting: Academic, industrial, and clinical partners from Portugal, Belgium, Iceland, and the United States.

Design: Experimental study.

View Article and Find Full Text PDF

This work investigates the immobilization of the antibiotic gentamicin sulfate (GS) in electrospun fiber mats composed of poly(lactic acid) (PLA), poly(ε-caprolactone) (PCL) and the copolymer poly(lactic-co-glycolic acid) (PLGA). Since GS is highly water soluble but weakly soluble in the organic solvents commonly used in the electrospinning process, two methods of immobilization were investigated: by suspension electrospinning, in which GS particles were directly dispersed in the polymeric organic solutions, and by emulsion electrospinning, in which GS was solubilized in an aqueous phase that was then dispersed in the organic polymeric solution containing the surfactant SPAN80. Fibers with distinct diameters and morphologies were obtained for the different methods and compositions.

View Article and Find Full Text PDF

Endophthalmitis, an inflammation of the eye due to perioperative infection, may occur after cataract surgery. Intraocular lenses (IOLs) loaded with an antibiotic have been proposed asan alternative to the conventional postoperative endophthalmitis prophylaxis, since the antibiotic is delivered directly to the target site. In this work, an IOL-based antibiotic releasing system was prepared from a copolymer used in the production of IOLs and a fluoroquinolone used in endophthalmitis prophylaxis (moxifloxacin, MFX).

View Article and Find Full Text PDF

Diseases affecting the posterior segment of the eye are the most common cause of visual disorders in industrialized countries. This scenario has encouraged the development of new treatment modalities for these diseases, such as drug loaded implants with prolonged drug release. The aim of the present work was to create a polymeric based biodegradable ophthalmic implant for the delivery of dexamethasone.

View Article and Find Full Text PDF

Two commercial bone grafts used in dentistry (Osteobiol Gen-Os®, a xenograft of porcine origin, and Bonelike®, a hydroxyapatite based synthetic material), in the form of granules, were characterized and evaluated in vivo regarding the intensity of the tissue inflammatory response. These biomaterials were characterized in terms of morphology, particle size distribution, porosity and pore size, specific surface area and density. The chemical composition and structure of the materials were accessed by Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD).

View Article and Find Full Text PDF

In this work the possibility of impregnating P(MMA-EHA-EGDMA) with flurbiprofen using a clean and environmentally friendly technology, namely supercritical fluid technology was evaluated. P(MMA-EHA-EGDMA) has been proposed as a promising matrix to be used for intraocular delivery of anti-inflammatory drugs used in eye surgery and flurbiprofen is a non-steroidal anti-inflammatory agent. Fundamental studies like, the solubility of the drug in carbon dioxide, as well as the sorption degree of this polymeric matrix in the presence of carbon dioxide have been previously carried out.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microspheres containing flurbiprofen were prepared by an oil-in-water emulsion solvent evaporation method, in order to develop a particulate drug delivery system for localized administration. A response surface method (RSM) using a central composite design was employed to evaluate the effect of the poly(vinyl alcohol) (PVA) (%, w/v) concentration in the aqueous phase and the PHBV concentration in the organic phase (%, w/v) on some of the resulting microspheres properties. The response variables were the encapsulation efficiency (EE), the mean particle size, the width of particle size distribution (expressed by the SPAN value) and the required time for the in vitro release of 50% of the encapsulated drug (t(50%)).

View Article and Find Full Text PDF