The capacity that G protein‑coupled receptor 30 (GPR30) has demonstrated for triggering estrogen‑dependent signaling pathways has attracted the interest of breast cancer researchers; however, the reported expression profiles and functions of GPR30 in breast cancer are inconsistent. The main purpose of the present investigation was to identify transcriptional mechanisms underlying the expression of GPR30 that allow a better understanding of its role in breast cancer progression. In the cell lines used as different polarity models in the present study, it was determined immunologically that GPR30 is expressed in normal mammary gland cells and that this expression decreased considerably during breast cancer development, where cell identity is lost.
View Article and Find Full Text PDFPosttranslational modifications occurring during the biosynthesis of G protein-coupled receptors include glycosylation and palmitoylation at conserved cysteine residues located in the carboxyl-terminus of the receptor. In a number of these receptors, these modifications play an important role in receptor function and particularly, in intracellular trafficking. In the present study, the three cysteine residues present in the carboxyl-terminus of the human FSHR were replaced with glycine by site-directed mutagenesis.
View Article and Find Full Text PDFThrough research carried out in the last 25 years about the breast cancer etiology, it has been possible to estimate that less than 10 % of patients who are diagnosed with the condition are carriers of some germline or somatic mutation. The clinical reports of breast cancer patients with healthy twins and the development of disease in women without high penetrance mutations detected, warn the participation more factors in the transformation process. The high incidence of mammary adenocarcinoma in the modern woman and the urgent need for new methods of prevention and early detection have demanded more information about the role that environment and lifestyle have on the transformation of mammary gland epithelial cells.
View Article and Find Full Text PDFActivating mutations in the follicle-stimulating hormone (FSH) receptor (FSHR) gene are rarely detected due to the absence of a clearly defined phenotype, particularly in men. We here report the biochemical features of a novel mutation in the first extracellular loop of the FSHR. The mutation (N431I) was detected in an asymptomatic man exhibiting normal spermatogenesis, suppressed serum FSH, and normal or elevated levels of biochemical markers of FSH action.
View Article and Find Full Text PDFCurrent evidence indicates that G protein-coupled receptors form dimers that may affect biogenesis and membrane targeting of the complexed receptors. We here analyzed whether expression-deficient follicle-stimulating hormone receptor (FSHR) mutants exert dominant negative actions on wild-type FSHR cell surface membrane expression. Co-transfection of constant amounts of wild-type receptor cDNA and increasing quantities of mutant (R556A or R618A) FSHR cDNAs progressively decreased agonist-stimulated cAMP accumulation, [(125)I]-FSH binding, and plasma membrane expression of the mature wild-type FSHR species.
View Article and Find Full Text PDFFollicle-stimulating hormone (FSH) is a glycoprotein hormone produced by the anterior pituitary gland. This gonadotropin plays an essential role in reproduction. Its receptor (FSHR) belongs to the superfamily of G protein-coupled receptors (GPCR), specifically the family of rhodopsin-like receptors.
View Article and Find Full Text PDFPhosphorylation of G protein-coupled receptors is one of the earliest events that regulate their function. Current evidence indicates that homologous desensitization of these receptors mainly involves G protein-coupled receptor kinases whereas in heterologous desensitization second messenger-activated kinases play key roles. Recent data show that transactivation of EGF (epidermal growth factor) receptors may also play a role in receptor phosphorylation.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) induces alpha(1B)-adrenoceptor phosphorylation through pertussis toxin-sensitive G proteins, phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC). Here we showed that transfection of the carboxyl terminus of the beta-adrenergic receptor kinase (betaARK) or the Deltap85 mutant of PI3K markedly decreased the alpha(1B)-adrenoceptor phosphorylation induced by LPA without decreasing the receptor phosphorylations induced by active phorbol esters or noradrenaline. In addition, it was observed that inhibitors of epidermal growth factor (EGF) receptor kinase and of metalloproteinases and an anti-heparin binding-EGF antibody also diminish LPA-induced phosphorylation; such partial inhibitions were not additive, indicating that they occur through a common process.
View Article and Find Full Text PDFG protein-coupled receptors are dynamically regulated. Such regulation is frequently associated with covalent posttranslational modifications, such as phosphorylation, and with regulatory elements. G protein-coupled receptor kinases and casein kinase 1alpha play key roles in agonist-dependent receptor phosphorylations.
View Article and Find Full Text PDF