Reported herein is an entrapment method for enzyme immobilization that does not require the formation of new covalent bonds. Ionic liquid supramolecular gels are formed containing enzymes that can be shaped into gel beads and act as recyclable immobilized biocatalysts. The gel was formed from two components, a hydrophobic phosphonium ionic liquid and a low molecular weight gelator derived from the amino acid phenylalanine.
View Article and Find Full Text PDFMaterials have been developed that encapsulate a homogeneous catalyst and enable it to operate as a heterogeneous catalyst in water. A hydrophobic ionic liquid within the material was used to dissolve Fe-TAML and keep it from leaching into the aqueous phase. One-pot processes were used to entrap Fe-TAML in basic ionic liquid gels, and ionic liquid gel spheres structured via a modified Stöber synthesis forming SiO particles of uniform size.
View Article and Find Full Text PDFCo-assembly of an inorganic-organic hybrid material through the combination of supramolecular organogel self-assembly, phase partitioning of a conjugated polymer (CP) and transcription of an inorganic oxide leads to a hybrid material with structured domains of organogel, CP and silica within tube and rod microstructures.
View Article and Find Full Text PDFChemoenzymatic dynamic kinetic resolution (DKR) of rac-1-phenyl ethanol into R-1-phenylethanol acetate was investigated with emphasis on the minimization of side reactions. The organometallic hydrogen transfer (racemization) catalyst was varied, and this was observed to alter the rate and extent of oxidation of the alcohol to form ketone side products. The performance of highly active catalyst [(pentamethylcyclopentadienyl)IrCl(2)(1-benzyl,3-methyl-imidazol-2-ylidene)] was found to depend on the batch of lipase B used.
View Article and Find Full Text PDFChem Commun (Camb)
April 2012
The synthesis of photoluminescent conjugated polymer silica ionogels using sol-gel chemistry is described. Cooperative self-assembly of an ionic liquid, the silica precursor and poly(9,9-dioctylfluorene) (PFO) via hydrogen bonding and π-stacking interactions drives formation of the PFO β-phase.
View Article and Find Full Text PDFMolecular hydrogenation catalysts have been co-entrapped with the ionic liquid [Bmim]NTf(2) inside a silica matrix by a sol-gel method. These catalytic ionogels have been compared to simple catalyst-doped glasses, the parent homogeneous catalysts, commercial heterogeneous catalysts, and Rh-doped mesoporous silica. The most active ionogel has been characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, and solid state NMR before and after catalysis.
View Article and Find Full Text PDF