Publications by authors named "Patricia C Chui"

Background & Aims: Nonalcoholic fatty liver disease is a common consequence of human and rodent obesity. Disruptions in lipid metabolism lead to accumulation of triglycerides and fatty acids, which can promote inflammation and fibrosis and lead to nonalcoholic steatohepatitis. Circulating levels of fibroblast growth factor (FGF)21 increase in patients with nonalcoholic fatty liver disease or nonalcoholic steatohepatitis; therefore, we assessed the role of FGF21 in the progression of murine fatty liver disease, independent of obesity, caused by methionine and choline deficiency.

View Article and Find Full Text PDF

Objective: Polymerase I and transcript release factor (PTRF) is a protein highly expressed in adipose tissue and is an integral structural component of caveolae. Here, we report on a novel role of PTRF in lipid mobilization.

Research Design And Methods: PTRF expression was examined in different adipose depots of mice during fasting, refeeding, and after administration of catecholamines and insulin.

View Article and Find Full Text PDF

Objective: Fibroblast growth factor 21 (FGF21) is a key mediator of fatty acid oxidation and lipid metabolism. Pharmacological doses of FGF21 improve glucose tolerance, lower serum free fatty acids, and lead to weight loss in obese mice. Surprisingly, however, FGF21 levels are elevated in obese ob/ob and db/db mice and correlate positively with BMI in humans.

View Article and Find Full Text PDF

Background & Aims: Fibroblast growth factor 21 (FGF21) is an hepatic protein that plays a critical role in metabolism, stimulating fatty acid oxidation in liver and glucose uptake in fat. Systemic administration to obese rodents and diabetic monkeys leads to improved glucose homeostasis and weight loss. In rodents, FGF21 increases with fasting and consumption of a ketogenic diet (KD).

View Article and Find Full Text PDF

In addition to its role in energy storage, adipose tissue also accumulates cholesterol. Concentrations of cholesterol and triglycerides are strongly correlated in the adipocyte, but little is known about mechanisms regulating cholesterol metabolism in fat cells. Here we report that antidiabetic thiazolidinediones (TZDs) and other ligands for the nuclear receptor PPARgamma dramatically upregulate oxidized LDL receptor 1 (OLR1) in adipocytes by facilitating the exchange of coactivators for corepressors on the OLR1 gene in cultured mouse adipocytes.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor gamma (PPARgamma) is the master regulator of adipogenesis as well as the target of thiazolidinedione (TZD) antidiabetic drugs. Many PPARgamma target genes are induced during adipogenesis, but others, such as glycerol kinase (GyK), are expressed at low levels in adipocytes and dramatically up-regulated by TZDs. Here, we have explored the mechanism whereby an exogenous PPARgamma ligand is selectively required for adipocyte gene expression.

View Article and Find Full Text PDF

Adipose tissue plays a central role in the control of energy homeostasis through the storage and turnover of triglycerides and through the secretion of factors that affect satiety and fuel utilization. Agents that enhance insulin sensitivity, such as rosiglitazone, appear to exert their therapeutic effect through adipose tissue, but the precise mechanisms of their actions are unclear. Rosiglitazone changes the morphological features and protein profiles of mitochondria in 3T3-L1 adipocytes.

View Article and Find Full Text PDF