Background: Ultraviolet (UV) radiation is a main cause of aging of sun-exposed skin, but greater attention is being focused on the damaging effects of high-energy visible (HEV) light (400 and 500 nm). HEV light exposure has increased with expanding use of consumer electronics, such as smartphones, which have a peak emission in the 400-490 nm range. Sunscreens containing titanium dioxide and zinc oxide protect against UVA and UVB radiation but provide limited protection against HEV light.
View Article and Find Full Text PDFAngiogenesis is largely driven by motile endothelial tip-cells capable of invading avascular tissue domains and enabling new vessel formation. Highly responsive to Vascular Endothelial Growth-Factor-A (VEGFA), endothelial tip-cells also suppress angiogenic sprouting in adjacent stalk cells, and thus have been a primary therapeutic focus in addressing neovascular pathologies. Surprisingly, however, there remains a paucity of specific endothelial tip-cell markers.
View Article and Find Full Text PDFBackground: Premature skin aging results from exposure to a range of environmental factors, primarily ultraviolet radiation, but also high-energy visible light in the blue spectrum, infrared radiation, and environmental pollution. These extrinsic factors result in the generation of reactive oxygen species which promote photoaging and DNA damage resulting in skin cancers.
Aims: To formulate skincare products utilizing a new coating applied to zinc oxide and titanium dioxide particles and complimentary skincare ingredients to provide broad protection against a range of environmental insults.
Axially assembled aluminum(III) porphyrin based dyads and triads have been constructed to investigate the factors that govern the energy and electron transfer processes in a perpendicular direction to the porphyrin plane. In the aluminum(III) porphyrin-free-base porphyrin (AlPor-Ph-H2Por) dyad, the AlPor occupies the basal plane, while the free-base porphyrin (H2Por) with electron withdrawing groups resides in the axial position through a benzoate spacer. The NMR, UV-visible absorption, and steady-state fluorescence studies confirm that the coordination of pyridine appended tetrathiafulvalene (TTF) derivative (TTF-py or TTF-Ph-py) to the dyad in noncoordinating solvents afford vertically arranged supramolecular self-assembled triads (TTF-py→AlPor-Ph-H2Por and TTF-Ph-py→AlPor-Ph-H2Por).
View Article and Find Full Text PDFDue to a rate increase in the resistance of microbial pathogens to currently used antibiotics, there is a need in society for the discovery of novel antimicrobials. Historically, fungi are a proven source for antimicrobial compounds. The main goals of this study were to investigate the fungal diversity associated with sea foam collected around the coast of Prince Edward Island and the utility of this resource for the production of antimicrobial natural products.
View Article and Find Full Text PDFFour new steroidal glycosides, acanthifoliosides G-J (1-4), were isolated as minor constituents from the Caribbean marine sponge Pandaros acanthifolium. These metabolites are characterized by a highly oxygenated D ring and the presence of a disaccharide rhamnose-glucose residue and a rhamnose at positions C-3 and C-15, respectively. Their structures were established on the basis of extensive interpretation of 1D and 2D NMR data and HRESIMS analyses.
View Article and Find Full Text PDFInhibiting angiogenesis has become an effective approach for treating cancer and other diseases. However, our understanding of signaling pathways in tumor angiogenesis has been limited by the embryonic lethality of many gene knockouts. To overcome this limitation, we used the plasticity of embryonic stem (ES) cells to develop a unique approach to study tumor angiogenesis.
View Article and Find Full Text PDFThis paper describes the host properties of a new cucurbit[6]uril analogue, studied by fluorescence and 1H NMR spectroscopy. This host has an elongated cavity with oval-shaped portals. It is intrinsically fluorescent, and more importantly, this fluorescence is sensitive to guest encapsulation, allowing for the study of the inclusion of nonfluorescent guests by fluorescence spectroscopy.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. Initial attempts to block VEGF by using a humanized monoclonal antibody are beginning to show promise in human cancer patients, underscoring the importance of optimizing VEGF blockade. Previous studies have found that one of the most effective ways to block the VEGF-signaling pathway is to prevent VEGF from binding to its normal receptors by administering decoy-soluble receptors.
View Article and Find Full Text PDF