Publications by authors named "Patricia Bento Da Silva"

Bixin (CHO; 394.51 g/mol) is the main apocarotenoid found in annatto seeds. It has a 25-carbon open chain structure with a methyl ester group and carboxylic acid.

View Article and Find Full Text PDF

Tuberculosis (TB) is an infectious disease that annually affects millions of people, and resistance to available antibiotics has exacerbated this situation. Another notable characteristic of Mycobacterium tuberculosis, the primary causative agent of TB, is its ability to survive inside macrophages, a key component of the immune system. In our quest for an effective and safe treatment that facilitates the targeted delivery of antibiotics to the site of infection, we have proposed a nanotechnology approach based on an iron chelator.

View Article and Find Full Text PDF

Melanoma, a severe form of skin cancer intricately linked to genetic and environmental factors, is predicted to reach 100,000 new cases worldwide by 2040, underscoring the need for effective and safe treatment options. In this study, we assessed the efficacy of a photosensitizer called Chlorophyll A (Chl-A) incorporated into hydrogels (HGs) made of chitosan (CS) and poloxamer 407 (P407) for Photodynamic Therapy (PDT) against the murine melanoma cell line B16-F10. The HG was evaluated through various tests, including rheological studies, SEM, and ATR-FTIR, along with cell viability assays.

View Article and Find Full Text PDF

The search for new antimicrobial agents is a continuous struggle, mainly because more and more cases of resistant strains are being reported. (MTB) is the main microorganism responsible for millions of deaths worldwide. The development of new antimicrobial agents is generally aimed at finding strong interactions with one or more bacterial receptors.

View Article and Find Full Text PDF

Background: Ruthenium complexes have shown promise in treating many cancers, including breast cancer. Previous studies of our group have demonstrated the potential of the trans- [Ru(PPh3)2(N,N-dimethylN'-thiophenylthioureato-k2O,S)(bipy)]PF6 complex, the Ru(ThySMet), in the treatment of breast tumor cancers, both in 2D and 3D culture systems. Additionally, this complex presented low toxicity when tested .

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease affects around 6.5 million people aged 65+ in the U.S. and resveratrol may help combat it due to its biological properties.
  • The research focused on developing an intranasal formulation of resveratrol using surfactant-based systems to improve its solubility, using ingredients like oleic acid and CETETH-20.
  • Tests showed that this formulation effectively improved learning and memory in animals and reduced neuroinflammation, making it a promising treatment option for Alzheimer's.
View Article and Find Full Text PDF

Investigate the heterogeneous tumor tissue organization and examine how this condition can interfere with the passive delivery of a lipid nanoemulsion in two breast cancer preclinical models (4T1 and Ehrlich). The authors used image techniques to follow the nanoemulsion biodistribution and microtomography, as well as traditional histopathology and electron microscopy to evaluate the tumor structural characteristics. Lipid nanoemulsion was delivered to the tumor, vascular organization depends upon the subtumoral localization and this heterogeneous organization promotes a nanoemulsion biodistribution to the highly vascular peripherical region.

View Article and Find Full Text PDF

Since lycopene has antioxidant activity, its combination with metformin may be useful to contrast diabetic complications related to oxidative stress. This study aimed to investigate the effects of metformin combined with lycopene on high-fat diet (HFD)-induced obese mice. Seventy-two C57BL-6J mice were divided into six groups: C (control diet-fed mice), H (HFD-fed mice for 17 weeks), H-V (HFD-fed mice treated with vehicle), H-M (HFD-fed mice treated with 50 mg/kg metformin), H-L (HFD-fed mice treated with 45 mg/kg lycopene), and H-ML (HFD-fed mice treated with 50 mg/kg metformin + 45 mg/kg lycopene).

View Article and Find Full Text PDF

Breast cancer is the most frequent cause of cancer death in women, representing the fifth leading cause of cancer death overall. Therefore, the growing search for the development of new treatments for breast cancer has been developed lately as well as drug delivery systems such as biocompatible metal-organic Frameworks (bio-MOFs). These may be promising and attractive for drug incorporation and release.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) mediated by photosensitizers loaded in nanostructures as solid lipid nanoparticles has been pinpointed as an effective and safe treatment against different skin cancers. Amazon butters have an interesting lipid composition when it comes to forming solid lipid nanoparticles (SLN). In the present report, a new third-generation photosensitizing system consisting of aluminum-phthalocyanine associated with Amazon butter-based solid lipid nanoparticles (SLN-AlPc) is described.

View Article and Find Full Text PDF

Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs.

View Article and Find Full Text PDF
Article Synopsis
  • * The immunosensor employs 50-nm gold nanoparticles (AuNPs) attached to antibodies targeting the SARS-CoV-2 spike protein, with various spectroscopic methods confirming its effectiveness.
  • * This method shows a high level of specificity, demonstrating no response to influenza viruses, and suggests potential for broader applications in other detection technologies for affordable mass COVID-19 testing.
View Article and Find Full Text PDF

Peroxisome proliferator-activated receptors are promising therapeutic targets for metabolic diseases, including obesity, diabetes, and dyslipidemia. This study describes the design, synthesis and pharmacological evaluation of stilbene-based compounds as dual PPARα/γ partial agonists with potency in the nanomolar range. In vitro and in vivo assays revealed that the lead compound (E)-4-styrylphenoxy-propanamide (5b) removed C-cholesterol from the foam cells through apolipoprotein A-I and High-Density Lipoprotein-2.

View Article and Find Full Text PDF

To develop a new curcumin carrier consisting of murumuru butter nanoparticles (SLN-Cs). A phase-inversion temperature method was used to produce SLN-Cs. The interaction of SLN-Cs with murine colon adenocarcinoma (CT26) cells was analyzed by confocal microscopy.

View Article and Find Full Text PDF

This study aimed to encapsulate and characterise a potential anti-tuberculosis copper complex (CuCl(INH).HO:) into polymeric nanoparticles (PNs) of polymethacrylate copolymers (Eudragit®, Eu) developed by nanoprecipitation method. NE30D, S100 and, E100 polymers were tested.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) offer many opportunities for applications across biology and medicine. Their wide range of chemical composition makes toxicologically acceptable formulation possible, and their high level of functionality enables possible applications as delivery systems for therapeutics agents. Surface modifications have been used in drug delivery systems to minimize their interaction with the bulk, improving their specificity as targeted carriers.

View Article and Find Full Text PDF

Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms.

View Article and Find Full Text PDF

Mycobacterium tuberculosis is the major etiological agent for tuberculosis (TB), which is the leading cause of single pathogen infection-related deaths worldwide. The End TB Strategy of the World Health Organization aimed to decrease the incidence of TB by 20% between 2015 and 2020, which was not achieved. Here, the growth-inhibitory effects of tris-(1,10-phenanthroline) iron (II) complex ([Fe(phen)]), a known commercially available cheap chemical substance, were examined.

View Article and Find Full Text PDF

The apoptotic, cytotoxic, and cytostatic activities for [10]-gingerol in triple-negative breast cancer cells (TNBCs) were already reported. However, despite these important antitumor activities, the compound has the disadvantage to have a hydrophobic characteristic, hindering in vivo administration. To surpass this issue, in this study we have created a [10]-gingerol-loaded nanoemulsion (10GNE) in order to increase the stability and solubility of the compound.

View Article and Find Full Text PDF

Background: Antimicrobial resistance poses substantial risks to human health. Thus, there is an urgent need for novel antimicrobial agents, including alternative compounds, such as peptides derived from bacterial toxin-antitoxin (TA) systems. ParELC3 is a synthetic peptide derived from the ParE toxin reported to be a good inhibitor of bacterial topoisomerases and is therefore a potential antibacterial agent.

View Article and Find Full Text PDF

is a medicinal plant used for the treatment of diabetes, hemorrhages, and hypertension in Brazilian folk medicine. Considering that plant extracts are attractive sources of new drugs, the aim of the present study was to verify the influence of incorporating 70% hydroalcoholic of leaves in nanostructured lipid systems on the mutagenic and antifungal activities of the extract. In this work, we evaluated the antifungal potential of loaded on the microemulsion against sp for minimum inhibitory concentration, using the microdilution technique.

View Article and Find Full Text PDF

Purpose: Vulvovaginal candidiasis (VVC) is an opportunistic fungal infection that adversely affects a woman's health, due to unpleasant symptoms, therapeutic challenges, and the emergence of resistant strains. The association of natural products and nanotechnology is important to improve the antifungal potential of medicinal plants. We aimed to evaluate the in vitro and in vivo anti- activity of unloaded (EO) and loaded (ME+EO) essential oil of in the microemulsion (ME).

View Article and Find Full Text PDF

Dermatophyte fungal infections are difficult to treat because they need long-term treatments. 4-Nerolidylcatechol (4-NC) is a compound found in that has been reported to demonstrate significant antifungal activity, but is easily oxidizable. Due to this characteristic, the incorporation in nanostructured systems represents a strategy to guarantee the compound's stability compared to the isolated form and the possibility of improving antifungal activity.

View Article and Find Full Text PDF

Several types of cutaneous fungal infections can affect the population worldwide, such as dermatophytosis, cutaneous candidiasis, onychomycosis, and sporotrichosis. However, oral treatments have pronounced adverse effects, making the topical route an alternative to avoid this disadvantage. On the other hand, currently available pharmaceutical forms designed for topical application, such as gels and creams, do not demonstrate effective retention of biomolecules in the upper layers of the skin.

View Article and Find Full Text PDF

Systemic infections is one of the major causes of mortality worldwide, and a shortage of drug approaches applied for the rapid and necessary treatment contribute to increase the levels of death in affected patients. Several drug delivery systems based in nanotechnology such as metallic nanoparticles, liposomes, nanoemulsion, microemulsion, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, hydrogels and liquid crystals can contribute in the biological performance of active substances for the treatment of microbial diseases triggered by fungi, bacteria, virus and parasites. In the presentation of these statements, this review article present and demonstrate the effectiveness of these drug delivery systems for the treatment of systemic diseases caused by several microorganisms, through a review of studies on scientific literature worldwide that contributes to better information for the most diverse professionals from the areas of health sciences.

View Article and Find Full Text PDF