Publications by authors named "Patricia Back"

Article Synopsis
  • The text discusses lipid nanoparticles (LNPs), primarily composed of liposomes containing cholesterol, which are commonly used in therapeutics.
  • It highlights how these nanoparticles affect drug pharmacokinetics and are easily taken up by macrophages, which can convert cholesterol into oxysterols, linking these compounds to immune modulation and diseases like atherosclerosis.
  • The authors emphasize the need for further research on the metabolism of LNP-associated cholesterol and its immune effects to improve the safety and effectiveness of LNP-based drug delivery systems.
View Article and Find Full Text PDF

While tumor-associated macrophages (TAM) have pro-tumoral activity, the ablation of macrophages in cancer may be undesirable since they also have anti-tumoral functions, including T cell priming and activation against tumor antigens. Alendronate is a potent amino-bisphosphonate that modulates the function of macrophages in vitro, with potential as an immunotherapy if its low systemic bioavailability can be addressed. We repurposed alendronate in a non-leaky and long-circulating liposomal carrier similar to that of the clinically approved pegylated liposomal doxorubicin to facilitate rapid clinical translation.

View Article and Find Full Text PDF

(Lam.) DC extract-loaded nanoemulsions have demonstrated potential for wound healing, with promising effects on keratinocyte proliferation. We carried out the first in vivo investigation of the wound healing activity of a hydrogel containing extract-loaded nanoemulsions.

View Article and Find Full Text PDF

We have previously shown that alendronate, an amino-bisphosphonate, when reformulated in liposomes, can significantly enhance the efficacy of cytotoxic chemotherapies and help remodel the immunosuppressive tumor microenvironment towards an immune-permissive milieu resulting in increased anticancer efficacy. In addition, we have previously shown that the strong metal-chelating properties of alendronate can be exploited for nuclear imaging of liposomal biodistribution. To further improve anticancer efficacy, a pegylated liposome formulation co-encapsulating alendronate and doxorubicin (PLAD) has been developed.

View Article and Find Full Text PDF

Soybean isoflavone aglycones have been investigated as potential wound healing compounds for topical application. The aim of this study was to evaluate the wound healing properties of a soybean isoflavone aglycones-rich fraction (IAF) when incorporated into lipid nanoemulsions dispersed in acrylic-acid hydrogels. Formulations exhibited a mean droplet size in the sub 200 nm range, negative ζ-potential (-60 mV), and displayed non-Newtonian pseudoplastic behavior.

View Article and Find Full Text PDF

Soybean isoflavone-rich extracts have been considered as promising skin antiaging products due to their antioxidant activity. This study investigates the effect of soybean isoflavone forms on porcine ear skin permeation/retention from topical nanoemulsions and their potential in protecting skin against oxidative damage caused by UVA/UVB light. Soybean non-hydrolyzed (SNHE) and hydrolyzed (SHE) extracts, mainly composed of genistin and genistein, were produced.

View Article and Find Full Text PDF

Significance: Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology.

Recent Advances: The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C.

View Article and Find Full Text PDF

The objective of this study was to use pinhão derivatives, starch and coat extract, as new natural ingredients to develop cosmetic formulations. Two types of formulation, gel and emulgel, and their controls were developed. The formulations were characterized by stability studies using thermal stress.

View Article and Find Full Text PDF

Many insights into the mechanisms and signaling pathways underlying aging have resulted from research on the nematode Caenorhabditis elegans. In this paper, we discuss the recent findings that emerged using this model organism concerning the role of reactive oxygen species (ROS) in the aging process. The accrual of oxidative stress and damage has been the predominant mechanistic explanation for the process of aging for many years, but reviewing the recent studies in C.

View Article and Find Full Text PDF

Because superoxide is involved in various physiological processes, many efforts have been made to improve its accurate quantification. We optimized and validated a superoxide-specific and -sensitive detection method. The protocol is based on fluorescence detection of the superoxide-specific hydroethidine (HE) oxidation product, 2-hydroxyethidium.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are no longer considered merely toxic by-products of the oxidative metabolism. Tightly controlled concentrations of ROS and fluctuations in redox potential may be important mediators of signaling processes. Understanding the role of ROS and redox status in physiology, stress response, development, and aging requires their nondisruptive, spatiotemporal, real-time quantification in a living organism.

View Article and Find Full Text PDF

The superoxide free radical (O(2)(•-)) has been viewed as a likely major contributor to aging. If this is correct, then superoxide dismutase (SOD), which removes O(2)(•-), should contribute to longevity assurance. In Caenorhabditis elegans, overexpression (OE) of the major cytosolic Cu/Zn-SOD, sod-1, increases life span.

View Article and Find Full Text PDF

Reactive oxygen species have long been considered a major cause of aging. However, previous work showed that loss of superoxide dismutase (SOD) only weakly affects lifespan of Caenorhabditis elegans. Here, we examined the impact of sod gene deletion and overexpression on the mRNA levels of the remaining sod genes and other detoxification genes.

View Article and Find Full Text PDF

Free-living flatworms ("Turbellaria") are appropriate model organisms to gain better insight into the role of stem cells in ageing and rejuvenation. Ageing research in flatworms is, however, still scarce. This is partly due to culture difficulties and the lack of a complete set of demographic data, including parameters such as median lifespan and age-specific mortality rate.

View Article and Find Full Text PDF

The superoxide radical (O(2)(-)) has long been considered a major cause of aging. O(2)(-) in cytosolic, extracellular, and mitochondrial pools is detoxified by dedicated superoxide dismutase (SOD) isoforms. We tested the impact of each SOD isoform in Caenorhabditis elegans by manipulating its five sod genes and saw no major effects on life span.

View Article and Find Full Text PDF

Numerous studies have aimed to alleviate oxidative stress in a wide range of organisms by increasing superoxide dismutase (SOD) activity. However, experimental approaches have yielded contradictory evidence, and kinetics models have shown that increases in SOD activity may increase, decrease, or not change hydrogen peroxide (H2O2) production, depending on the balance of the various processes that produce and consume superoxide (O2-). In this study we tested whether administration of EUK-8, a synthetic mimetic of the SOD enzyme, can protect starving Escherichia coli cells against stasis-induced oxidative stress.

View Article and Find Full Text PDF