Publications by authors named "Patricia B Petray"

Chagas heart disease (CHD), caused by the protozoan parasite Trypanosoma cruzi, consists of a progressive myocarditis which may lead to congestive heart failure or sudden death. Previous work from our laboratory has demonstrated that the experimental infection of mice with T. cruzi positively modulates the expression of CD40 by myocardial cells, whose ligation potentiates IFN-γ-induced IL-6 production.

View Article and Find Full Text PDF

Multiple perturbations of the immune response affecting a range of cells have been reported in -infected individuals and associated to clinical manifestations of chronic Chagas disease. There is a paucity of knowledge about the role of T follicular helper (Tfh) cells in this infection. Here, we sought to characterize circulating Tfh (cTfh) cells in chronic Chagas disease patients and to identify potential associations with disease severity in humans.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the efficacy of imiquimod-containing nanovesicles prepared with lipids extracted from the hyperhalophile archaebacterium Halorubrum tebenquichense (nanoARC-IMQ) to induce protection against Trypanosoma cruzi infection. The therapeutic efficacy of archaeolipid nanovesicles was assessed in an experimental murine model of acute infection with T. cruzi.

View Article and Find Full Text PDF

Background: Leishmaniasis and Chagas disease are life-threatening illnesses caused by the protozoan parasites Leishmania spp. and Trypanosoma cruzi, respectively. They are known as "neglected diseases" due to the lack of effective drug treatments and the scarcity of research work devoted to them.

View Article and Find Full Text PDF

The proinflammatory cytokine macrophage migration inhibitory factor (MIF) is a key player in innate immunity. MIF has been considered critical for controlling acute infection by the protozoan Trypanosoma cruzi, but the underlying mechanisms are poorly understood. Our study aimed to analyze whether MIF could favor microbicidal activity of the macrophage, a site where T.

View Article and Find Full Text PDF

The inflammatory response in the myocardium is an important aspect of the pathogenesis of Chagas' heart disease raised by Trypanosoma cruzi. CD40, a transmembrane type I receptor belonging to the tumor necrosis factor receptor (TNFR) family, is expressed in a broad spectrum of cell types and is crucial in several inflammatory and autoimmune diseases. Activation of CD40 through ligation to CD40L (CD154) induces multiple effects, including the secretion of proinflammatory molecules.

View Article and Find Full Text PDF

Clinical symptoms of chronic Chagas disease occur in around 30% of the individuals infected with Trypanosoma cruzi and are characterized by heart inflammation and dysfunction. The pathogenesis of chronic chagasic cardiomyopathy (CCC) is not completely understood yet, partially because disease evolution depends on complex host-parasite interactions. Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that promotes numerous pathophysiological processes.

View Article and Find Full Text PDF

Archaeosomes (ARC), vesicles made from lipids extracted from Archaea, display strong adjuvant properties. In this study, we evaluated the ability of the highly stable ARC formulated from total polar lipids of a new Halorubrum tebenquichense strain found in Argentinean Patagonia, to act as adjuvant for soluble parasite antigens in developing prophylactic vaccine against the intracellular protozoan T. cruzi, the etiologic agent of Chagas disease.

View Article and Find Full Text PDF

Objective: The presence of autoantibodies with adrenergic and cholinergic activity, capable of triggering neurotransmitter receptor-mediated effects, has been associated with pathogenesis in T. cruzi-infected hosts. The goal of this study was to investigate the production of anti-M2 muscarinic receptor autoantibodies (Anti-M2R AAbs) as well as the IFN-γ profile in children at the early stage of Chagas disease, and to examine whether trypanocidal chemotherapy with benzonidazole (BZ) could modify both response patterns.

View Article and Find Full Text PDF

Heart failure and sudden death are the most common causes of death in patients with Chagas' disease. The main drug available for Chagas treatment is benznidazole, which eradicates Trypanosoma cruzi parasites during the acute stage of infection. However, its effectiveness during the chronic phase remains unclear.

View Article and Find Full Text PDF

Background: Archaeosomes (ARC), vesicles prepared from total polar lipids (TPL) extracted from selected genera and species from the Archaea domain, elicit both antibody and cell-mediated immunity to the entrapped antigen, as well as efficient cross priming of exogenous antigens, evoking a profound memory response. Screening for unexplored Archaea genus as new sources of adjuvancy, here we report the presence of two new Halorubrum tebenquichense strains isolated from grey crystals (GC) and black mood (BM) strata from a littoral Argentinean Patagonia salt flat. Cytotoxicity, intracellular transit and immune response induced by two subcutaneous (sc) administrations (days 0 and 21) with BSA entrapped in ARC made of TPL either form BM (ARC-BM) and from GC (ARC-GC) at 2% w/w (BSA/lipids), to C3H/HeN mice (25 microg BSA, 1.

View Article and Find Full Text PDF

Objective: Chagas' disease is caused by persistent Trypanosoma cruzi infection in muscle cells that ultimately results in chronic inflammation and tissue destruction. The goal of this study was to determine the expression of different chemokines and their receptors, as well as proinflammatory cytokines and inducible nitric oxide synthase, in muscles from mice acutely infected with T. cruzi.

View Article and Find Full Text PDF

We investigated the in vitro action of an hydrosoluble 2-nitroimidazole, Etanidazole (EZL), against Trypanosoma cruzi, the etiologic agent of Chagas disease. EZL displayed lethal activity against isolated trypomastigotes as well as amastigotes of T. cruzi (RA strain) growing in Vero cells or J774 macrophages, without affecting host cell viability.

View Article and Find Full Text PDF

The crucial role played by Ag163B6/cruzipain, the major cystein proteinase of Trypanosoma cruzi, in the process of parasite internalization into mammalian cells and IgG hydrolysis, signals this antigen as a potential target for raising a protective immune response against Chagas' disease. On the other hand, synthetic oligodeoxynucleotides containing CpG-motifs (CpG-ODN) are capable of driving immunity toward a Th1 bias. Considering the importance of Th1 mechanisms in resistance against this intracellular parasite, we analyzed the ability of Ag163B6/cruzipain plus CpG-ODN to induce immunoprotection against a lethal challenge with trypomastigotes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionv9re657pt3i62e6ur9dn33t48ovu081c): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once