Echolocating animals that forage in social groups can potentially benefit from eavesdropping on other group members, cooperative foraging or social defence, but may also face problems of acoustic interference and intra-group competition for prey. Here, we investigate these potential trade-offs of sociality for extreme deep-diving Blainville's and Cuvier's beaked whales. These species perform highly synchronous group dives as a presumed predator-avoidance behaviour, but the benefits and costs of this on foraging have not been investigated.
View Article and Find Full Text PDFFear of predation can induce profound changes in the behaviour and physiology of prey species even if predator encounters are infrequent. For echolocating toothed whales, the use of sound to forage exposes them to detection by eavesdropping predators, but while some species exploit social defences or produce cryptic acoustic signals, deep-diving beaked whales, well known for mass-strandings induced by navy sonar, seem enigmatically defenceless against their main predator, killer whales. Here we test the hypothesis that the stereotyped group diving and vocal behaviour of beaked whales has benefits for abatement of predation risk and thus could have been driven by fear of predation over evolutionary time.
View Article and Find Full Text PDFSimultaneous high resolution sampling of predator behavior and habitat characteristics is often difficult to achieve despite its importance in understanding the foraging decisions and habitat use of predators. Here we tap into the biosonar system of Blainville's beaked whales, Mesoplodon densirostris, using sound and orientation recording tags to uncover prey-finding cues available to echolocating predators in the deep-sea. Echolocation sounds indicate where whales search and encounter prey, as well as the altitude of whales above the sea-floor and the density of organisms around them, providing a link between foraging activity and the bio-physical environment.
View Article and Find Full Text PDF