Publications by authors named "Patricia Antalis"

The distributed genome hypothesis (DGH) states that each strain within a bacterial species receives a unique distribution of genes from a population-based supragenome that is many times larger than the genome of any given strain. The observations that natural infecting populations are often polyclonal and that most chronic bacterial pathogens have highly developed mechanisms for horizontal gene transfer suggested the DGH and provided the means and the mechanisms to explain how chronic infections persist in the face of a mammalian host's adaptive defense mechanisms. Having previously established the validity of the DGH for obligate pathogens, we wished to evaluate its applicability to an opportunistic bacterial pathogen.

View Article and Find Full Text PDF

Objective: To create, array, and characterize a pooled, high-coverage, genomic library composed of multiple biofilm-forming clinical strains of the opportunistic pathogen, Pseudomonas aeruginosa (PA). Twelve strains were obtained from patients with otorrhea, otitis media, and cystic fibrosis as a resource for investigating: difference in the transcriptomes of planktonic and biofilm envirovars; the size of the PA supragenome and determining the number of virulence genes available at the population level; and the distributed genome hypothesis.

Methods: High molecular weight genomic DNAs from 12 clinical PA strains were individually hydrodynamically sheared to produce mean fragment sizes of approximately 1.

View Article and Find Full Text PDF

Eight low-passage-number Streptococcus pneumoniae clinical isolates, each of a different serotype and a different multilocus sequence type, were obtained from pediatric participants in a pneumococcal vaccine trial. Comparative genomic analyses were performed with these strains and two S. pneumoniae reference strains.

View Article and Find Full Text PDF

A similarity statistic for codon usage was developed and used to compare novel gene sequences found in clinical isolates of Haemophilus influenzae with a reference set of 80 prokaryotic, eukaryotic and viral genomes. These analyses were performed to obtain an indication as to whether individual genes were Haemophilus-like in nature, or if they probably had more recently entered the H.influenzae gene pool via horizontal gene transfer from other species.

View Article and Find Full Text PDF

We hypothesize that Haemophilus influenzae, as a species, possesses a much greater number of genes than that found in any single H. influenzae genome. This supragenome is distributed throughout naturally occurring infectious populations, and new strains arise through autocompetence and autotransformation systems.

View Article and Find Full Text PDF

Unlabelled: Haemophilus influenzae is one of the most important respiratory pathogens of man. It has been etiologically associated with otitis media, otorrhea, and chronic obstructive pulmonary disease. Identification of new genomic elements will provide novel targets to fight chronic infections caused by this organism.

View Article and Find Full Text PDF